首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4623篇
  免费   552篇
  国内免费   876篇
  2024年   29篇
  2023年   131篇
  2022年   139篇
  2021年   199篇
  2020年   230篇
  2019年   216篇
  2018年   186篇
  2017年   199篇
  2016年   208篇
  2015年   237篇
  2014年   276篇
  2013年   298篇
  2012年   266篇
  2011年   246篇
  2010年   177篇
  2009年   285篇
  2008年   260篇
  2007年   283篇
  2006年   283篇
  2005年   258篇
  2004年   198篇
  2003年   167篇
  2002年   167篇
  2001年   169篇
  2000年   119篇
  1999年   114篇
  1998年   94篇
  1997年   86篇
  1996年   74篇
  1995年   63篇
  1994年   52篇
  1993年   45篇
  1992年   43篇
  1991年   34篇
  1990年   36篇
  1989年   26篇
  1988年   21篇
  1987年   17篇
  1986年   22篇
  1985年   19篇
  1984年   14篇
  1983年   9篇
  1982年   16篇
  1981年   7篇
  1980年   9篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   7篇
  1975年   2篇
排序方式: 共有6051条查询结果,搜索用时 109 毫秒
71.
Each cryptomonad strain contains only a single spectroscopic type of biliprotein. These biliproteins are isolated as 50000 kDa '2 complexes which carry one bilin on the and three on the subunit. Six different bilins are present on the cryptomonad biliproteins, two of which (phycocyanobilin and phycoerythrobilin) also occur in cyanobacterial and rhodophytan biliproteins, while four are known only in the cryptomonads. The subunit is encoded on the chloroplast genome, whereas the subunits are encoded by a small nuclear multigene family. The subunits of all cryptomonad biliproteins, regardless of spectroscopic type, have highly conserved amino acid sequences, which show > 80% identity with those of rhodophytan phycoerythrin subunits. In contrast, cyanobacteria and red algal chloroplasts each contain several spectroscopically distinct biliproteins organized into macromolecular complexes (phycobilisomes). The data on biliproteins, as well as several other lines of evidence, indicate that the cryptomonad biliprotein antenna system is primitive and antedates that of the cyanobacteria. It is proposed that the gene encoding the cryptomonad biliprotein subunit is the ancestral gene of the gene family encoding cyanobacterial and rhodophytan biliprotein and subunits.Abbreviations Chl chlorophyll - CER chloroplast endoplasmic reticulum - SSU rRNA small subunit ribosomal RNA  相似文献   
72.
Elevated CO2 (ambient + 35 Pa) increased shoot dry mass production in Avena fatua by 68% at maturity. This increase in shoot biomass was paralleled by an 81% increase in average net CO2 uptake (A) per unit of leaf area and a 65% increase in average A at the ecosystem level per unit of ground area. Elevated CO2 also increased ecosystem A per unit of biomass. However, the products of total leaf area and light-saturated leaf A divided by the ground surface area over time appeared to lie on a single response curve for both CO2 treatments. The approximate slope of the response suggests that the integrated light saturated capacity for leaf photosynthesis is 10-fold greater than the ecosystem rate. Ecosystem respiration (night) per unit of ground area, which includes soil and plant respiration, ranged from-20 (at day 19) to-18 (at day 40) mol m-2 s-1 for both elevated and ambient CO2 Avena. Ecosystem below-ground respiration at the time of seedling emergence was -10 mol m-2 s-1, while that occuring after shoot removal at the termination of the experiment ranged from -5 to-6 mol m-2 s-1. Hence, no significant differences between elevated and ambient CO2 treatments were found in any respiration measure on a ground area basis, though ecosystem respiration on a shoot biomass basis was clearly reduced by elevated CO2. Significant differences existed between leaf and ecosystem water flux. In general, leaf transpiration (E) decreased over the course of the experiment, possibly in response to leaf aging, while ecosystem rates of evapotranspiration (ET) remained constant, probably because falling leaf rates were offset by an increasing total leaf biomass. Transpiration was lower in plants grown at elevated CO2, though variation was high because of variability in leaf age and ambient light conditions and differences were not significant. In contrast, ecosystem evapotranspiration (ET) was significantly decreased by elevated CO2 on 5 out of 8 measurement dates. Photosynthetic water use efficiencies (A/E at the leaf level, A/ET at the ecosystem level) were increased by elevated CO2. Increases were due to both increased A at leaf and ecosystem level and decreased leaf E and ecosystem ET.  相似文献   
73.
利用52个家蚕品种在春秋两个季节的试验资料,对万头茧层量及其构成因素作了通径分析。结果表明:不同环境下,诸因素对万头茧层量的作用不完全相同,主要表现为幼虫生命率和茧层率在不同季节中的作用相对地变化。结合育种实践指出:(1)春用蚕品种的选育应在保证生命率的前提下努力提高茧层率和全茧量,而夏秋用品种的选育应在保证茧层率的前提下努力提高生命率和全茧量。 (2)为提高选择效果,春蚕期育种应以选择茧层率为主,夏秋期育种应以选择生命率为主。  相似文献   
74.
The unicellular green alga Chlamydomonas reinhardtii synthesizes glycerol as an osmoregulatory metabolite when exposed to high saline concentrations (200 mM NaCl). Response to osmotic stress can be used for biotechnological production of this compound. When synthesis of a substance is linked to photosynthetic capacity and consequently to effective light, the production on a large scale makes an efficient utilization of light necessary. In the present work a model for evaluation of effective light has been tested.  相似文献   
75.
A photomicrobial sensor consisting of immobilized Chlorella vulgaris and an oxygen electrode has been developed for selective determination of phosphate. When 40 mM phosphate was added to the sensor system, the photocurrent increased to a maximum under light irradiation with a response time of 1 min. The current increased with increasing phosphate concentration in the range 8–70 mM. Selectivity of the sensor was satisfactory. Good agreement was obtained between the phosphate concentrations in lake water determined by the photomicrobial sensor and by conventional colorimetry (correlation coefficient 0.96).  相似文献   
76.
A soluble cytochrome, cytochrome c-551 was purified from an aerobic photosynthetic bacterium Erythrobacter species strain OCh 114 (ATCC No. 33942) by ammonium sulfate fractionation, ion-exchange chromatography and gel-filtration. The cytochrome had absorption maxima at 277, 410, and 524–525 nm in the oxidized form, and at 415, 522, and 550.5 nm in the reduced form. At 77 K, the -band of the absorption spectrum of the reduced form split in two at 547 and 549 nm. The millimolar absorption coefficient at 550.5 nm was 26.8 mM-1 cm-1 in the reduced form. This cytochrome was an acidic protein with an isoelectric point of 4.9. Its molecular weight was determined to be 15,000 by gel-filtration on Sephadex G-100 and 14,500 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The midpoint potential of this cytochrome was +250 mV at pH 7.0. This cytochrome did not bind CO.  相似文献   
77.
Abstract Unlike wheat chloroplasts, wheat protoplasts showed a pronounced restoration of the induction phase after a short period of darkness. This difference was used to investigate the relative roles of light-induced reductive activation of enzymes and the auto-catalytic increase in the level of substrates in the control of the rate of photosynthesis during induction. Light activation and dark inactivation of ribulose 5-phosphate kinase, fructose 1,6-biphosphatase and NADP+-specific glyceraldehydephosphate dehydrogenase were measured. In this respect there was no appreciable difference between protoplasts and chloroplasts. In contrast, the level of photosynthetic intermediates remained constant in darkened isolated chloroplasts, but declined rapidly in chloroplasts isolated from darkened protoplasts. When fructose 1,6-bisphosphatase was pre-activated by treating protoplasts with dithiothreitol the lag was only slightly shortened. These results are discussed in terms of control of the rate of the photosynthesis during the lag by substrates rather than limitation imposed by activity of any of the enzymes measured.  相似文献   
78.
In green algae several characteristic differences in the slope of the fast 685 nm fluorescence transient indicate the existence of different mechanisms for the regulation of the photosynthetic electron transport in vivo with respect to the requirements for ATP and NADPH. Autotrophically cultivated Chlamydobotrys stellata exhibits a normal time curve of the fluorescence yield. Anaerobiosis and C02-deficiency raise the O-, I- and S-level, whereas the P- level is lowered and the I-D-decay disappears. The readdition of oxygen increases the fluorescence significantly. Supplementation of aerobic cells with CO2 restores the normal fluorescence transients. The replacement of carbon dioxide by acetate as a carbon source in the light lowers the overall fluorescence emission and abolishes the D-P-increase and the P-S-decline. The presence of DCMU increases fluorescence only at high intensities of incedent light. Anaerobiosis in these photoheterotrophic algae lowers the fluorescence emission. In this case DCMU increases fluorescence even at low light intensities. In Gonium multicoccum, which shows a normal fluorescence transient when cultivated autotrophically, CO2-deficiency abolishes the O-level and increases the I- and S-niveau. Additional anaerobiosis in CO2-deficient cells raises the steady state emission. Readdition of oxygen to these cells raises the I- and S-level even more and prevents the build up of the P-level. In Gonium  相似文献   
79.
The mechanism of photosynthetic carbon dioxide fixation in the green flagellate Dunaliella tertiolecta Butcher varies during growth in batch culture. Evidence for this change comes from three sources: i) algae from the stationary phase incorporated a greater proportion of the fixed carbon into amino arids and protein than did cells from the mid-exponential phase; ii) the activity of phosphoenolpyruvate carboxylase relative to that of ribulose-1, 5-di-phosphate carboxylase increased with age in batch culture; and, iii) cells from the stationary phase appeared to utilize the bicarbonate ion as the substrate for photosynthesis, whereas those from mid-exponential phase appeared to utilize fire carbon dioxide. These data suggest that a change of photosynthetic mechanism can occur within a single species of alga, depending on its physiological state.  相似文献   
80.
Light absorption by two green seaweeds with similar photophysiology but different anatomies are compared: i) Ulva lactuca var. rigida (C. Ag.) Le Jolis, an optically translucent species of two cell layers both bearing chloroplasts; and, ii) Codium fragile subsp. tomentosoides (van Goor) Silva, an optically opaque species with a colorlelss medulla surrounded by a cortex of choloroplast-bearing utriclels. Thallus absorptance (fraction of incident light absorbed) was measured for various pigment contents. Absorptance by U. lactuca was dependent on pigment concentration in an exponential manner and never exceeded 0.6, whereas absorptance by C. fragile was independent of pigment concentration and always approached a balue of 1.0. Water in the medullary tissue of C. fragile is often of the utricles. The utricles appear to be “integrating spheres” enhancing the capture of incident light, aided by the wave-guide function of the thin peripheral layer of cytoplasm and a reflector function at their base. Photosynthitic performance for U. lactuca saturates at high light intensities and attenuates rapidly with decreasing intensities. In contrast, photosynthetic performance for C. fragile saturates at low light intensities and attenuates slowly with diminishing radiation. Extrapolated diel variation in photosynthesis shows that U. lactuca's anatomy is adaptive for high light intensity environments, whereas C. fragile's anatomy is adaptive for low light intensity environments. Both seaweeds fit into the ecological category of “fugitive” species, and compete in the Long Island Sound (Atlantic Ocean) rocky intertidal for free-space. Predictions are presented for relative species abundances along a monotonic gradient of light intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号