首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5639篇
  免费   524篇
  国内免费   1356篇
  2024年   24篇
  2023年   124篇
  2022年   140篇
  2021年   138篇
  2020年   215篇
  2019年   241篇
  2018年   255篇
  2017年   234篇
  2016年   251篇
  2015年   262篇
  2014年   301篇
  2013年   400篇
  2012年   245篇
  2011年   303篇
  2010年   273篇
  2009年   372篇
  2008年   360篇
  2007年   398篇
  2006年   312篇
  2005年   265篇
  2004年   216篇
  2003年   205篇
  2002年   187篇
  2001年   190篇
  2000年   154篇
  1999年   130篇
  1998年   109篇
  1997年   114篇
  1996年   97篇
  1995年   97篇
  1994年   91篇
  1993年   94篇
  1992年   90篇
  1991年   88篇
  1990年   76篇
  1989年   56篇
  1988年   41篇
  1987年   49篇
  1986年   54篇
  1985年   43篇
  1984年   52篇
  1983年   28篇
  1982年   43篇
  1981年   24篇
  1980年   24篇
  1979年   19篇
  1978年   10篇
  1977年   10篇
  1976年   10篇
  1975年   2篇
排序方式: 共有7519条查询结果,搜索用时 375 毫秒
991.
We studied the short-term impact of sediment load on the photosynthetic performance of Saccharina latissima sporophytes exposed to ultraviolet radiation (UVR). The algae were collected from different sediment-influenced environments in Svalbard in August 2007. Initial optimum quantum yield (F v/F m) of sediment-covered sporophytes was significantly higher compared to sediment-free sporophytes. Experimental sediment coating on blade discs had a photoprotective function by screening out 92% of the weighted UV-B (UVery) treatment. No UVR-induced photoinhibition was observed in sediment-coated blade discs while sediment removal caused a reduction in F v/F m not only after 12-h UVR exposure but also after 6-h recovery in low white light compared to the initial value. Thus, sediment coating has a short-term functional significance in mitigating the negative effect of UVR on photosynthesis of an important kelp species and set a baseline for further studies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
992.
We are proposing an interresidue interaction energy map (IEM)--a new tool for protein structure analysis and protein bioinformatics. This approach employs the sum of pair-wise interaction energies of a particular residue as a measure of its structural importance. We will show that the IEM can serve as a means for identifying key residues responsible for the stability of a protein. Our method can be compared with the interresidue contact map but has the advantage of weighting the contacts by the stabilization energy content which they bring to the protein structure. For the theoretical adjustment of the proposed method, we chose the Trp-cage mini protein as a model system to compare a spectrum of computational methods ranging from the ab initio MP2 level through the DFT method to empirical force-field methods. The IEM method correctly identifies Tryptophane 6 as the key residue in the Trp-cage. The other residues with the highest stabilizing contributions correspond to the structurally important positions in the protein. We have further tested our method on the Trp2Cage miniprotein--a P12W mutant of the Trp-cage and on two proteins from the rubredoxin family that differ in their thermostability. Our method correctly identified the thermodynamically more stable variants in both cases and therefore can also be used as a tool for the relative measurement of protein stability. Finally, we will point out the important role played by dispersion energy, which contributes significantly to the total stabilization energy and whose role in aromatic pairs is clearly dominant. Surprisingly, the dispersion energy plays an even more important role in the interaction of prolines with aromatic systems.  相似文献   
993.
Fischer B  Fukuzawa K  Wenzel W 《Proteins》2008,70(4):1264-1273
The adaptation of forcefield-based scoring function to specific receptors remains an important challenge for in-silico drug discovery. Here we compare binding energies of forcefield-based scoring functions with models that are reparameterized on the basis of large-scale quantum calculations of the receptor. We compute binding energies of eleven ligands to the human estrogen receptor subtype alpha (ERalpha) and four ligands to the human retinoic acid receptor of isotype gamma (RARgamma). Using the FlexScreen all-atom receptor-ligand docking approach, we compare docking simulations parameterized by quantum-mechanical calculation of a large protein fragment with purely forcefield-based models. The use of receptor flexibility in the FlexScreen permits the treatment of all ligands in the same receptor model. We find a high correlation between the classical binding energy obtained in the docking simulation and quantum mechanical binding energies and a good correlation with experimental affinities R=0.81 for ERalpha and R=0.95 for RARgamma using the quantum derived scoring functions. A significant part of this improvement is retained, when only the receptor is treated with quantum-based parameters, while the ligands are parameterized with a purely classical model.  相似文献   
994.
995.
铁蛋白是一种生物储铁蛋白 ,其储存铁的特性和储存铁在生物体内的特殊形态 ,通过相对温和、简便的生物、化学、物理过程 ,可合成多种具有特异的力、热、光、电、磁等特性的纳米粒子 ,并可用来构建纳米级的分子器件  相似文献   
996.
We examined the effect of gas-stripping on the in situ removal of acetone, butanol, and ethanol (ABE) from batch reactor fermentation broth. The mutant strain (Clostridium beijerinckii BA101) was not affected adversely by gas stripping. The presence of cells in the fermentation broth affected the selectivities of ABE. A considerable improvement in the productivity and yield was recorded in this work in comparison with the non-integrated process. In an integrated process of ABE fermentation-recovery using C. beijerinckii BA101, ABE productivities and yield were improved up to 200 and 118%, respectively, as compared to control batch fermentation data. In a batch reactor C. beijerinckii BA101 utilized 45.4 g glucose l–1 and produced 17.7 g total ABE l–1, while in the integrated process it utilized 161.7 g glucose l–1 and produced total ABE of 75.9 g l–1. In the integrated process, acids were completely converted to solvents when compared to the non-integrated process (batch fermentation) which contained residual acids at the end of fermentation. In situ removal of ABE by gas stripping has been reported to be one of the most important techniques of solvent removal. During these studies we were able to maintain the ABE concentration in the fermentation broth below toxic levels.  相似文献   
997.
研究结果表明,生长在77±5PaCO2分压下30d的荔枝幼树,其光合速率较大气CO2分压(39.3Pa)下的低23%,光下线粒体呼吸速率和不包含光下呼吸的CO2补偿点亦略有降低.空气CO2增高使叶片最大羧化速率(Vcmax)和最大电子传递速率(Jmax)降低,表明大气增高CO2分压下叶片的光系统I(PSI)能量水平较低,叶片超氧自由基产率亦降低39%,叶片感染荔枝霜疫霉病率则从生长在大气CO2分压下的1.8%增至9.5%.可能较低光合和呼吸代谢诱致较低的超氧自由基产率,而使叶片易受病害侵染.叶片受病害侵染后表现为超氧自由基的激增.在全球大气CO2分压增高趋势下须加强对荔枝霜疫霉病的控制.  相似文献   
998.
Submerged culture experiments were conducted in three phases to determine the optimal medium for rapidly producing conidia of the fungal bioherbicide Septoria polygonorum. In phase I, 47 crude carbon sources were evaluated to determine which would support sporulation. Under the conditions tested, pea brine (5–10% v/v) provided best conidiation. In phase II, a fractional factorial design was utilized to screen 38 different medium adjuncts in combination with pea brine for improved sporulation. MgSO4 was the only factor that resulted in a significant improvement. In phase III, a central composite design with response surface methodology was used to optimize concentrations of these critical factors. The model predicted optimal sporulation in a medium composed of 8.88% v/v pea brine+0.1 molar MgSO4 with an expected titer of 1.78×108 conidia/ml. Actual mean titer attained with the model-derived medium was 1.15×108 conidia/ml. No significant difference was observed in virulence of conidia produced on agar vs. the model-derived (liquid) medium.  相似文献   
999.
A quantum mechanics (QM)/molecular mechanics (MM) hybrid method was applied to the Pr state of the cyanobacterial phytochrome Cph1 to calculate the Raman spectra of the bound PCB cofactor. Two QM/MM models were derived from the atomic coordinates of the crystal structure. The models differed in the protonation site of His260 in the chromophore-binding pocket such that either the δ-nitrogen (M-HSD) or the ɛ-nitrogen (M-HSE) carried a hydrogen. The optimized structures of the two models display small differences specifically in the orientation of His260 with respect to the PCB cofactor and the hydrogen bond network at the cofactor-binding site. For both models, the calculated Raman spectra of the cofactor reveal a good overall agreement with the experimental resonance Raman (RR) spectra obtained from Cph1 in the crystalline state and in solution, including Cph1 adducts with isotopically labeled PCB. However, a distinctly better reproduction of important details in the experimental spectra is provided by the M-HSD model, which therefore may represent an improved structure of the cofactor site. Thus, QM/MM calculations of chromoproteins may allow for refining crystal structure models in the chromophore-binding pocket guided by the comparison with experimental RR spectra. Analysis of the calculated and experimental spectra also allowed us to identify and assign the modes that sensitively respond to chromophore-protein interactions. The most pronounced effect was noted for the stretching mode of the methine bridge A-B adjacent to the covalent attachment site of PCB. Due a distinct narrowing of the A-B methine bridge bond angle, this mode undergoes a large frequency upshift as compared with the spectrum obtained by QM calculations for the chromophore in vacuo. This protein-induced distortion of the PCB geometry is the main origin of a previous erroneous interpretation of the RR spectra based on QM calculations of the isolated cofactor.Abbreviations: Agp1, phytochrome from Agrobacterium tumefaciens; α-CPC, α-subunit of C-phycocyanin; BV, biliverdin IXα; B3LYP, three-parameter exchange functional according to Becke, Lee, Yang, and Parr; DFT, density functional theory; DrBphP, phytochrome from Deinococcus radiodurans; GAF, domain found in cGMP-specific phosphodiesterases; MM, molecular mechanics; MD, molecular dynamics; N-H ip, N-H in-plane bending; PCB, phycocyanobilin; PED, potential energy distribution; phyA, plant phytochrome; Pr, Pfr, red- and far-red absorbing parent states of phytochrome; PΦB, phytochromobilin; QM, quantum mechanics; RMSD, root mean-square deviation; RR, resonance Raman  相似文献   
1000.
Chlamydomonas reinhardtii is a green microalga capable of turning its metabolism towards H2 production under specific conditions. However this H2 production, narrowly linked to the photosynthetic process, results from complex metabolic reactions highly dependent on the environmental conditions of the cells. A kinetic model has been developed to relate culture evolution from standard photosynthetic growth to H2 producing cells. It represents transition in sulfur-deprived conditions, known to lead to H2 production in Chlamydomonas reinhardtii, and the two main processes then induced which are an over-accumulation of intracellular starch and a progressive reduction of PSII activity for anoxia achievement. Because these phenomena are directly linked to the photosynthetic growth, two kinetic models were associated, the first (one) introducing light dependency (Haldane type model associated to a radiative light transfer model), the second (one) making growth a function of available sulfur amount under extracellular and intracellular forms (Droop formulation). The model parameters identification was realized from experimental data obtained with especially designed experiments and a sensitivity analysis of the model to its parameters was also conducted. Model behavior was finally studied showing interdependency between light transfer conditions, photosynthetic growth, sulfate uptake, photosynthetic activity and O2 release, during transition from oxygenic growth to anoxic H2 production conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号