首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2193篇
  免费   173篇
  国内免费   602篇
  2968篇
  2024年   13篇
  2023年   42篇
  2022年   50篇
  2021年   45篇
  2020年   81篇
  2019年   75篇
  2018年   70篇
  2017年   74篇
  2016年   89篇
  2015年   112篇
  2014年   100篇
  2013年   136篇
  2012年   112篇
  2011年   114篇
  2010年   80篇
  2009年   125篇
  2008年   130篇
  2007年   160篇
  2006年   134篇
  2005年   144篇
  2004年   116篇
  2003年   107篇
  2002年   104篇
  2001年   95篇
  2000年   83篇
  1999年   62篇
  1998年   57篇
  1997年   53篇
  1996年   46篇
  1995年   38篇
  1994年   34篇
  1993年   32篇
  1992年   34篇
  1991年   29篇
  1990年   31篇
  1989年   24篇
  1988年   19篇
  1987年   13篇
  1986年   20篇
  1985年   17篇
  1984年   11篇
  1983年   9篇
  1982年   11篇
  1981年   7篇
  1980年   8篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   2篇
排序方式: 共有2968条查询结果,搜索用时 15 毫秒
81.
Biao 810S is a chlorina mutant of the thermosensitive genic male sterile (TGMS) rice. We compared photosynthetic characteristics of these two lines. The contents of chlorophylls and carotenoids in Biao 810S were approximately half of those in 810S. However, the net photosynthetic rate (P N) of Biao 810S was higher than that of 810S under high irradiance or low concentration of carbon dioxide, and the photon quantum efficiency was higher than that of 810S. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in Biao 810S was only 69.80 % of that in 810S, but the activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme were 79.50 and 69.06 % higher than those of 810S, respectively, suggesting that the efficiency of photon energy utilization in Biao 810S was enhanced by reduction of thermal dissipation and increase of electron transfer rate to generate sufficient assimilation power for the dark reactions. Consequently, the increased activities of C4 photosynthetic enzymes lead to more effective fixation of CO2 and the synergistic effect of light and dark reactions contributed to the higher P N of Biao 810S.  相似文献   
82.
The mangroves Rhizophora lamarkii, Ceriops roxburghiana, Bruguiera gymnorrhiza, Aegiceras corniculatum, and Lumnitzera racemosa were screened for their carbon metabolic pathways by measuring net photosynthetic rate (P N), 13C discrimination rate, leaf anatomy, titratable acidity, and activities of phosphoenolpyruvate carboxylase, NADH-malate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, and pyruvate phosphate dikinase. The tested mangroves had a well developed succulence, opening of stomata during day time and closure in the night hours, and absence of diurnal fluctuation of organic acids in their leaves which excludes the possibility of these species being CAM plants. Moreover, the leaf anatomy had not exhibited Kranz syndrome. The high values of discrimination against 13C, low P N, high CO2 compensation concentration, and the activities of aminotransferases in the direction of alanine formation suggest that the species may follow C3 mode of carbon metabolic pathway.  相似文献   
83.
84.
Through its impact on photosynthesis and morphogenesis, light is the environmental factor that most affects plant architecture. Using light rather than chemicals to manage plant architecture could reduce the impact on the environment. However, the understanding of how light modulates plant architecture is still poor and further research is needed. To address this question, we examined the development of two rose cultivars, Rosa hybrida‘Radrazz’ and Rosa chinensis‘Old Blush’, cultivated under two light qualities. Plants were grown from one‐node cuttings for 6 weeks under white or blue light at equal photosynthetic efficiencies. While plant development was totally inhibited in darkness, blue light could sustain full development from bud burst until flowering. Blue light reduced the net CO2 assimilation rate of fully expanded leaves in both cultivars, despite increasing stomatal conductance and intercellular CO2 concentrations. In ‘Radrazz’, the reduction in CO2 assimilation under blue light was related to a decrease in photosynthetic pigment content, while in both cultivars, the chl a/b ratio increased. Surprisingly, blue light could induce the same organogenetic activity of the shoot apical meristem, growth of the metamers and flower development as white light. The normal development of rose plants under blue light reveals the strong adaptive properties of rose plants to their light environment. It also indicates that photomorphogenetic processes can all be triggered by blue wavelengths and that despite a lower assimilation rate, blue light can provide sufficient energy via photosynthesis to sustain normal growth and development in roses.  相似文献   
85.
设置100%全光照(L0)、50%全光照(L1)、25%全光照(L2)和15%全光照(L3)4种光环境,分析不同遮荫环境对油用牡丹的生长、光合作用及叶绿素荧光参数的影响。结果表明:(1)油用牡丹的花朵数量、比叶重、气孔密度在L2和L3处理下显著低于L0处理,但L1较L0无显著变化;随着遮荫水平增加,油用牡丹种子数量、气孔器面积百分比逐渐下降,且在4个不同处理间差异显著。(2)油用牡丹叶片最大净光合速率(Pmax)、光补偿点(LCP)和光饱和点(LSP)在遮荫条件下均有不同程度降低,L2和L3处理的Pmax和LSP显著低于L0,但L1较L0无显著变化。(3)L3处理的光系统Ⅱ(PSⅡ)的最大量子效率(Fv/Fm)为0.76,显著低于其余3个光照处理;随光化光诱导时间的增加,开放的PSⅡ反应中心的激发能捕获效率(Fv′/Fm′)呈逐渐下降并趋于稳定的趋势,而PSⅡ的实际量子产量效率(ΦPSⅡ)、光化学猝灭系数(qP)、非光化学猝灭系数(NPQ)呈逐渐增加并趋于稳定的趋势,稳定后的Fv′/Fm′、ΦPSⅡ值表现为L0L1L2L3,NPQ大小顺序为L3L2L1L0,但不同处理间的qP无显著差异。研究发现:过度遮荫(15%~25%自然光强)严重抑制了油用牡丹的净光合速率,而且与产量直接相关的花朵数量和种子数量也显著下降,最终造成严重减产;在云南昆明地区50%~100%之间的自然光可能是油用牡丹较为合适的生长光强。  相似文献   
86.
Effects of the C132-methoxycarbonyl moiety on the self-assembly of chlorosomal chlorophylls (Chls) were studied. Model compounds, zinc methyl 3-devinyl-3-(1-hydroxymethyl)-pheophorbides a and a (Zn-31-OH-Chls a/a, C132-epimers) were synthesized from Chl a, and their aggregation behaviors were examined in Triton X-100 (TX-100) micellar suspensions and in 6%THF/water, in comparison with those of a pyrolized derivative, zinc methyl 3-devinyl-3-(1-hydroxymethyl)-132-demethoxycarbonyl-pheophorbide a (Zn-31-OH-pyroChl a). Zn-31-OH-Chl a formed self-aggregates in the TX-100 micellar suspension and gave a Qy absorption peak at 703 nm, while Zn-31-OH-pyroChl a aggregates of a Qy peak at 740 nm. In the Zn-31-OH-Chl a aggregate spectrum, the Qy red-shift was smaller, the band shape was broader, and the contribution of the residual monomer was more intense than that in the Zn-31-OH-pyroChl a aggregate spectrum. The bulky C132-moiety limits the ways of molecular association, and electronic interaction between the component molecules of the Zn-31-OH-Chl a aggregate is weakened. Stereoselective control of the aggregation of the C132-epimer was also examined.  相似文献   
87.
88.
Physiological traits that control the uptake of carbon dioxide and loss of water are key determinants of plant growth and reproduction. Variation in these traits is often correlated with environmental gradients of water, light, and nutrients, suggesting that natural selection is the primary evolutionary mechanism responsible for physiological diversification. Responses to selection, however, can be constrained by the amount of standing genetic variation for physiological traits and genetic correlations between these traits. To examine the potential for constraint on adaptive evolution, we estimated the quantitative genetic basis of physiological trait variation in one population of each of two closely related species (Lobelia siphilitica and L. cardinalis). Restricted maximum likelihood analyses of greenhouse-grown half-sib families were used to estimate genetic variances and covariances for seven traits associated with carbon and water relations. We detected significant genetic variation for all traits in L. siphilitica, suggesting that carbon-gain and water-use traits could evolve in response to natural selection in this population. In particular, narrow-sense heritabilities for photosynthetic rate (A), stomatal conductance (gs), and water-use efficiency (WUE) in our L. siphilitica population were high relative to previous studies in other species. Although there was significant narrow-sense heritability for A in L. cardinalis, we detected little genetic variation for traits associated with water use (gs and WUE), suggesting that our population of this species may be unable to adapt to drier environments. Despite being tightly linked functionally, the genetic correlation between A and gs was not strong and significant in either population. Therefore, our L. siphilitica population would not be genetically constrained from evolving high A (and thus fixing more carbon for growth and reproduction) while also decreasing gs to limit water loss. However, a significant negative genetic correlation existed between WUE and plant size in L. siphilitica, suggesting that high WUE may be negatively associated with high fecundity. In contrast, our results suggest that any constraints on the evolution of photosynthetic and stomatal traits of L. cardinalis are caused primarily by a lack of genetic variation, rather than by genetic correlations between these functionally related traits.  相似文献   
89.
The impact of powdery (Uncinula necator) and downy mildew (Plasmopara viticola) on grapevine leaf gas exchange was analysed. Gas exchange measurements (assimilation A, transpiration E, stomatal conductance gs, intercellular concentration of CO2Ci) were made on three different leaf materials: (i) healthy tissue of diseased leaves, (ii) infected tissue of diseased leaves, (iii) healthy tissue of healthy leaves (control treatment). Using the same source of leaf tissue, photosynthetic pigment concentration (chlorophyll a, b) and fluorescence levels (minimal fluorescence F0, maximal fluorescence Fm and the optimal quantum yield [Fm ? F0]/Fm) were determined to explain the mechanism of action of the two diseases on leaf assimilation. The results indicated that powdery and downy mildew reduced the assimilation rates, not only through a reduction in green leaf area (visual lesions), but also through an influence on gas exchange of the remaining green leaf tissues, determining a ‘virtual lesion’. The ratios between virtual and visual lesions were higher in powdery mildewed leaves than in the downy mildewed leaves. The photosynthetic fluorescence level (Fv/Fm) was affected by neither of the two pathogens. The reduction in intercellular concentration of CO2 and photosynthetic pigment may explain the lower assimilation rates in the healthy tissues of powdery and downy mildewed leaves respectively.  相似文献   
90.
Peat mosses (Sphagnum) largely govern carbon sequestration in Northern Hemisphere peatlands. We investigated functional traits related to growth and decomposition in Sphagnum species. We tested the importance of environment and phylogeny in driving species traits and investigated trade‐offs among them. We selected 15 globally important Sphagnum species, representing four sections (subgenera) and a range of peatland habitats. We measured rates of photosynthesis and decomposition in standard laboratory conditions as measures of innate growth and decay potential, and related this to realized growth, production, and decomposition in their natural habitats. In general, we found support for a trade‐off between measures of growth and decomposition. However, the relationships are not strong, with r ranging between 0.24 and 0.45 for different measures of growth versus decomposition. Using photosynthetic rate to predict decomposition in standard conditions yielded R2 = 0.20. Habitat and section (phylogeny) affected the traits and the trade‐offs. In a wet year, species from sections Cuspidata and Sphagnum had the highest production, but in a dry year, differences among species, sections, and habitats evened out. Cuspidata species in general produced easily decomposable litter, but their decay in the field was hampered, probably due to near‐surface anoxia in their wet habitats. In a principal components analysis, PCA, photosynthetic capacity, production, and laboratory decomposition acted in the same direction. The species were imperfectly clustered according to vegetation type and phylogeny, so that some species clustered with others in the same section, whereas others clustered more clearly with others from similar vegetation types. Our study includes a wider range of species and habitats than previous trait analyses in Sphagnum and shows that while the previously described growth–decay trade‐off exists, it is far from perfect. We therefore suggest that our species‐specific trait measures offer opportunities for improvements of peatland ecosystem models. Innate qualities measured in laboratory conditions translate differently to field responses. Most dramatically, fast‐growing species could only realize their potential in a wet year. The same species decompose fast in laboratory, but their decomposition was more retarded in the field than that of other species. These relationships are crucial for understanding the long‐term dynamics of peatland communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号