首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15979篇
  免费   1872篇
  国内免费   3850篇
  2024年   93篇
  2023年   407篇
  2022年   406篇
  2021年   532篇
  2020年   761篇
  2019年   746篇
  2018年   683篇
  2017年   762篇
  2016年   840篇
  2015年   790篇
  2014年   755篇
  2013年   947篇
  2012年   702篇
  2011年   818篇
  2010年   624篇
  2009年   817篇
  2008年   881篇
  2007年   955篇
  2006年   823篇
  2005年   838篇
  2004年   615篇
  2003年   650篇
  2002年   584篇
  2001年   544篇
  2000年   478篇
  1999年   423篇
  1998年   394篇
  1997年   353篇
  1996年   339篇
  1995年   315篇
  1994年   289篇
  1993年   289篇
  1992年   284篇
  1991年   232篇
  1990年   247篇
  1989年   223篇
  1988年   226篇
  1987年   162篇
  1986年   143篇
  1985年   144篇
  1984年   119篇
  1983年   71篇
  1982年   90篇
  1981年   56篇
  1980年   59篇
  1979年   46篇
  1978年   39篇
  1977年   25篇
  1976年   28篇
  1975年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
251.
The assimilatory activity of cotyledons can play an essential role in the survival of seedlings with a slow and delayed development of primary leaves. Changes in the photosynthetic activity of the cotyledon, from the onset of greening through senescence, were studied in two such plants, carob and sunflower, in order to determine its efficiency and duration, also in connection with the achievement of assimilatory autonomy by the plantlet. Chlorophyll analyses showed that the cotyledon's chloroplasts reached maximal greening in plantlets with a pair of expanded leaves. In contrast, the cotyledon's photosynthetic activity, measured as the rate of oxygen release, started to decrease early, before expansion of primary leaves. The decrease was due to the inactivation of a number of photosystem II (PSII) units, as revealed by immunodetection of breackdown products of the reaction centre's D1 and D2 thylakoid proteins. No signals of PSII alteration were noticed in the primary leaf chloroplasts that differentiated under the same environmental conditions. The damage to the cotyledon PSII, occurring in a non-photoinhibitory situation, might be due to a slower rate of turnover of D1 polypeptide than in the leaf thylakoids. The differential turnover of this protein in cotyledons and in leaves might represent an organ-specific regulation of the photosynthetic activity. The peculiarity of the cotyledon thylakoids make these organs useful objects for studying the metabolic cycle of both D1 and D2 proteins in vivo, under non-photoinhibiting conditions.  相似文献   
252.
The interactive effects of increased carbon dioxide (CO2) concentration and ultraviolet-B (UV-B, 280–320 nm) radiation on Acacia karroo Hayne, a C3 tree, and Themeda triandra Forsk., a C4 grass, were investigated. We tested the hypothesis that A. karroo would show greater CO2-induced growth stimulation than T. triandra, which would partially explain current encroachment of A. karroo into C4 grasslands, but that increased UV-B could mitigate this advantage. Seedlings were grown in open-top chambers in a greenhouse in ambient (360 μmol mol-1) and elevated (650 μmol mol-1) CO2, combined with ambient (1.56 to 8.66 kJ m-2 day-1) or increased (2.22 to 11.93 kJ m-2 day-1) biologically effective (weighted) UV-B irradiances. After 30 weeks, elevated CO2 had no effect on biomass of A. karroo, despite increased net CO2 assimilation rates. Interaction between UV-B and CO2 on stomatal conductance was found, with conductances decreasing only where elevated CO2 and UV-B were supplied separately. Increases in water use efficiencies, foliar starch concentrations, root nodule numbers and total nodule mass were measured in elevated CO2. Elevated UV-B caused only an increase in foliar carbon concentrations. In T. triandra, net CO2 assimilation rates were unaffected in elevated CO2, but stomatal conductances and foliar nitrogen concentrations decreased, and water use efficiencies increased. Biomass of all vegetative fractions, particularly leaf sheaths, was increased in elevated CO2. and was accompanied by increased leaf blade lengths and individual leaf and leaf sheath masses. However, tiller numbers were reduced in elevated CO2. Significantly moderating effects of elevated UV-B were apparent only in individual masses of leaf blades and sheaths, and in total sheath and shoot biomass. The direct CO2-induced growth responses of the species therefore do not support the hypothesis of CO2-driven woody encroachment of C4 grasslands. Rather, differential changes in resource use efficiency between grass and woody species, or morphological responses of grass species, could alter the competitive balance. Increased UV-B radiation is unlikely to substantially alter the CO2 response of these species.  相似文献   
253.
A telescopic method for photographing within 8×8 cm minirhizotrons   总被引:1,自引:0,他引:1  
The volatile organic compounds produced during a sequence of soil incubations under controlled conditions, with either added NH4 +-N or NO3 --N, were collected and identified. The nature and relative amounts of the volatile organic compounds produced by the microorganisms in the soils were remarkably reproducible and consistent.  相似文献   
254.
Roni Aloni  John R. Barnett 《Planta》1996,198(4):595-603
The differentiation of phloem anastomoses linking the longitudinal vascular bundles has been studied in stem internodes of Cucurbita maxima Duchesne, C. pepo L. and Dahlia pinnata Cav. These anastomoses comprise naturally occurring regenerative sieve tubes which redifferentiate from interfascicular parenchyma cells in the young internodes. In all three species, severing a vascular bundle in a young internode resulted in regeneration of xylem to form a curved by-pass immediately around the wound. The numerous phloem anastomoses in these young internodes were not involved in this process, the regenerated vessels originating from interfascicular parenchyma alone. Conversely, in mature internodes of Dahlia, the regenerated vessels originated from initials of the interfascicular cambia, and their phloem anastomoses did not influence the pattern of xylogenesis. On the other hand, in old internodes of Cucurbita, in which an interfascicular cambium was not yet developed, the parenchyma cells between the bundles had lost the ability to redifferentiate into vessel elements, and instead, regenerated vessels were produced in the phloem anastomoses. Thus, the wounded region of the vascular bundle was not bypassed via the shortest, curved pathway, but by more circuitous routes further away from the wound. Some of the regenerated vessels produced in the phloem anastomoses were extremely wide, and presumably efficient conductors of water. It is proposed that the dense network of phloem anastomoses developed during evolution as a mechanism of adaptation to possible damage in mature internodes by providing flexible alternative pathways for efficient xylem regeneration in plants with limited or no interfascicular cambium.This paper is dedicated to the memory of the late Isaac Blachmann (deceased 19 November 1995), father-in-law of the senior author, for encouragement and advice throughout the yearsThis research was supported by an International Scientific Exchange Award to R.A. from the Israel Academy of Sciences and The Royal Society.  相似文献   
255.
In short-season soybean production areas, low soil temperature is the major factor limiting plant growth and yield. The decreases in soybean yield at low temperatures are mainly due to nitrogen limitation. Genistein, the most effective plant-to-bacterium signal in the soybean (Glycine max (L.) Merr.) nitrogen fixation symbiosis, was used to pretreat Bradyrhizobium japonicum. We have previously reported that this increased soybean nodulation and nitrogen fixation in growth chamber studies. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein, prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean grain yield and protein yield in short season areas. The results of these experiments indicated that genistein-preincubated bradyrhizobia increased the grain yield and protein yield of AC Bravor, the later maturing of the two cultivars tested. Genistein without B. japonicum, applied onto seeds in the furrow at the time of planting also increased both grain and protein yield by stimulation of native soil B. japonicum. Interactions existed between genistein application and soybean cultivars, and indicated that the cultivar with the greatest yield potential responded more to genistein addition.  相似文献   
256.
A review is given of the prospects for using process-oriented models of water and nutrient uptake in improving integrated agriculture. Government-imposed restrictions on the use of external inputs will increase the likelihood of (temporary) nutrient or water stress in crop production in NW Europe and thus a better understanding is required of shoot-root-soil interactions than presently available. In modelling nutrient and water uptake, three approaches are possible: 1) models-without-roots, based on empirically derived efficiency ratios for uptake of available resources, 2) models evaluating the uptake potential of root systems as actually found in the field and 3) models which also aim at a prediction of root development as influenced by interactions with environmental factors. For the second type of models the major underlying processes are known and research can concentrate on model refinement on the one hand and practical application on the other. The main parameters required for such models are discussed and examples are given of practical applications. For the third type of models quantification of processes known only qualitatively is urgently needed.  相似文献   
257.
The natural abundance of 15N was examined in soil profiles from forests and pastures of the Brazilian Amazon Basin to compare tropical forests on a variety of soil types and to investigate changes in the sources of nitrogen to soils following deforestation for cattle ranching. Six sites in the state of Rondônia, two sites in Pará and one in Amazonas were studied. All sites except one were chronosequences and contained native forest and one or more pastures ranging from 2 to 27 years old. Forest soil 15N values to a depth of 1 m ranged from 8 to 23 and were higher than values typically found in temperate forests. A general pattern of increasing 15N values with depth near the soil surface was broadly similar to patterns in other forests but a decrease in 15N values in many forest profiles between 20 and 40 cm suggests that illuviation of 15N-depleted nitrate may influence total soil 15N values in deeper soil where total N concentrations are low. In four chronosequences in Rondônia, the 15N values of surface soil from pastures were lower than in the original forest and 15N values were increasingly depleted in older pastures. Inputs of atmospheric N by dinitrogen fixation could be an important N source in these pastures. Other pastures in Amazonas and Pará and Rondônia showed no consistent change from forest values. The extent of fractionation that leads to 15N enrichment in soils was broadly similar over a wide range of soil textures and indicated that similar processes control N fractionation and loss under tropical forest over a broad geographic region. Forest 15N profiles were consistent with conceptual models that explain enrichment of soil 15N values by selective loss of 14N during nitrification and denitrification.  相似文献   
258.
Carbon disulfide (CS2) and carbonyl sulfide (COS) are colorless, foul-smelling, volatile sulfur compounds with biocidal properties. Some plants produce CS2 or COS or both. When used as an intercrop or forecrop, these plants may have agronomic potential in protecting other plants. Most of the factors which affect production of these plant-generated organic sulfides are unknown. We determined the effects of sulfate concentration, plant age, nitrogen fixation, drought stress, root injury (through cutting), and undisturbed growth on COS production in Leucaena retusa or Leucaena leucocephala and the effect of some of these factors on CS2 production in Mimosa pudica. In addition, we determined if organic sulfides were produced in all Leucaena species. When L. retusa and M. pudica seedlings were grown in a plant nutrient medium with different sulfate concentrations (50 to 450 mg SL-1), COS or CS2 from crushed roots generally increased with increasing sulfate concentration. COS production was highest (74 ng mg-1 dry root) for young L. retusa seedlings and declined to low amounts (<5 ng mg-1 dry root) for older seedlings. Nitrogen fixation reduced the amounts of COS or CS2 produced in L. leucocephala and M. pudica. Under conditions of undisturbed growth, root cutting, or drought stress, no COS production was detected in 4-to 8-weeks-old L. retusa plants. COS or CS2 or both was obtained from crushed roots or shoots of all 13 known Leucaena species.  相似文献   
259.
Many crop models relate the allocation of dry matter between shoots and roots exclusively to the crop development stage. Such models may not take into account the effects of changes in environment on allocation, unless the allocation parameters are altered. In this paper a crop model with a dynamic allocation parameter for dry matter between shoots and roots is described. The basis of the model is that a plant allocates dry matter such that its growth is maximized. Consequently, the demand and supply of carbon, nitrogen, and water is maintained in balance. This model supports the hypothesis that a functional equilibrium exists between shoots and roots.This paper explains the mathematical computation procedure of the crop model. Moreover, an analysis was made of the ability of a crop model to simulate plant dry matter production and allocation of dry matter between plant organs. The model was tested using data from a greenhouse experiment in which spring wheat (Triticum aestivum L.) was grown under different soil moisture and nitrogen (N) levels.Generally, the model simulations agreed well with data recorded for total plant dry matter. For validation data the coefficient of determination (r2) between simulated and measured shoot dry weight was 0.96. For the validation treatments r2 was slightly lower, 0.94. In addition to dry matter production the model succeeded satisfactorily in simulating the dry weight of different plant organs. The response of simulated root to shoot ratio to the level of soil moisture was mainly in accordance with the measured data. In contrast, the simulated ratio seemed to be insensitive to the changes in the levels soil N concentration used in the experiment.The data used in the present study were not extensive, and more data are needed to validate the model. However, the results showed that the model responses to the changes in soil N and water level were realistic and mostly agreed with the data. Thus, we suggest that the model and the method employed to allocate dry matter between roots and shoots are useful when modelling the growth of crops under N and water limited conditions.  相似文献   
260.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After 10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy, total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically feasible way to increase alfalfa production in water-limited environments. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号