首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15941篇
  免费   1878篇
  国内免费   3761篇
  2024年   27篇
  2023年   391篇
  2022年   374篇
  2021年   531篇
  2020年   758篇
  2019年   746篇
  2018年   683篇
  2017年   762篇
  2016年   840篇
  2015年   790篇
  2014年   755篇
  2013年   947篇
  2012年   702篇
  2011年   818篇
  2010年   624篇
  2009年   817篇
  2008年   881篇
  2007年   955篇
  2006年   823篇
  2005年   838篇
  2004年   615篇
  2003年   650篇
  2002年   584篇
  2001年   544篇
  2000年   478篇
  1999年   423篇
  1998年   394篇
  1997年   353篇
  1996年   339篇
  1995年   315篇
  1994年   288篇
  1993年   289篇
  1992年   284篇
  1991年   232篇
  1990年   247篇
  1989年   223篇
  1988年   226篇
  1987年   162篇
  1986年   143篇
  1985年   144篇
  1984年   119篇
  1983年   71篇
  1982年   90篇
  1981年   56篇
  1980年   57篇
  1979年   46篇
  1978年   39篇
  1977年   25篇
  1976年   28篇
  1975年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Making transgenic livestock: genetic engineering on a large scale.   总被引:5,自引:0,他引:5  
The feasibility of introducing foreign genes into the genomes of cattle, goats, pigs, and sheep has only recently been demonstrated. Studies have thus far focused on improving growth efficiency or directing expression of pharmaceutical proteins to the mammary glands of these species. The general strategy for producing transgenic livestock and mice is similar. In addition to the obvious difference in scale between mice and livestock experiments, there are noteworthy obstacles that significantly reduce the efficiency of producing transgenic livestock. Low embryo viability, low transgene integration rates, and high animal costs contribute to project costs that can easily exceed hundreds of thousands of dollars. A better understanding of the mechanisms that govern transgene integration should lead to improved efficiencies. But, the full potential of the transgenic livestock system will not be fully realized until: 1) gene constructs can be designed that function in a reproducible, predictable manner; and 2) the genetic control of physiological processes are more clearly elucidated. Newly emerging approaches may resolve at least some of these issues within the next decade.  相似文献   
142.
In an 18 year old Japanese larch stand, leaf characteristics such as area, weight, gross photosynthetic rate and respiration rate were studied in order to obtain basic information on estimating canopy photosynthesis and respiration. The leaf growth courses in area and weight from bud opening were approximated by simple logistic curves. The growth coefficient for the area growth curve was 0.155–0.175 day−1, while that for the weight growth was 0.112–0.117 day−1. The larger growth coefficient in area growth caused the seasonal change in specific leaf area (SLA) that increased after bud opening to its peak early in May at almost 300 cm2 g−1 and then decreased until it leveled off at about 140 cm2g−1. The change inSLA indicates the possibility that leaf area growth precedes leaf thickness growth. The relationship between the coefficientsa andb of the gross photosynthetic rate (p)-light flux density (1) curve (p=bI/(1+aI)) and the mean relative light flux density (I′/I 0) at each canopy height were approximated by hyperbolic formulae:a=A/(I′/I 0)+B andb=C/(I′/I 0)+D. Leaf respiration rate was also increased with increasingI′/I 0. Seasonal change of gross photosynthetic rate and leaf respiration rate were related to mean air temperature through linear regression on semilogarithmic co-ordinates.  相似文献   
143.
Summary A soybean nodulin cDNA clone (E41) hybrid-selected mRNA for three in vitro translation products with apparent molecular weights of 26 kDa, 25 kDa and 24 kDa. Based on Southern analysis of soybean genomic DNA, combined with mapping and sequencing of genomic clones, we identified four genes that are related to E41, one of which was identified to be the previously characterized N-20 gene. Our data indicate the linkage of three of the genes, of which one is a truncated version and suggest that they originated by gene duplication combined with deletion and conversion. The genes are highly expressed and we postulate that the sequence conservation in the 5 and 3 flanking regions of all four genes, has a functional role in their expression. Hybrid-selected translation products of E41 are not immunoprecipitable with antibody to the soluble fraction of nodules suggesting that they are membrane associated. The N-20 gene, which is a member of this gene subfamily, showed sequence similarity to four previously characterized nodulin genes and a phylogenetic tree is proposed based on the extent of sequence similarity.  相似文献   
144.
145.
146.
Summary The spatial overlap of woody plant root systems and that of annual or perennial grasses promotes competition for soil-derived resources. In this study we examined competition for soil nitrogen between blue oak seedlings and either the annual grassBromus mollis or the perennial grassStipa pulchra under controlled outdoor conditions. Short-term nitrogen competition was quantified by injecting15N at 30 cm depth in a plane horizontal to oak seedling roots and that of their neighbors, and calculating15N uptake rates, pool sizes and15N allocation patterns 24 h after labelling. Simultaneously, integrative nitrogen competition was quantified by examining total nitrogen capture, total nitrogen pools and total nitrogen allocation.Stipa neighbors reduced inorganic soil nitrogen content to a greater extent than didBromus plants. Blue oak seedlings responded to lower soil nitrogen content by allocating lower amounts of nitrogen per unit of biomass producing higher root length densities and reducing the nitrogen content of root tissue. In addition, blue oak seedlings growing with the perennial grass exhibited greater rates of15N uptake, on a root mass basis, compensating for higher soil nitrogen competition inStipa neighborhoods. Our findings suggest that while oak seedlings have lower rates of nitrogen capture than herbaceous neighbors, oak seedlings exhibit significant changes in nitrogen allocation and nitrogen uptake rates which may offset the competitive effect annual or perennial grasses have on soil nitrogen content.  相似文献   
147.
The objective of the study was to determine whether nutrient fluxes mediated by hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi between the root zones of grass and legume plants differ with the legume's mode of N nutrition. The plants, nodulating or nonnodulating isolines of soybean [ Glycine max (L.) Merr.], were grown in association with a dwarf maize ( Zea mays L.) cultivar in containers which interposed a 6-cm-wide root-free soil bridge between legume and grass container compartments. The bridge was delimited by screens (44 μm) which permitted the passage of hyphae, but not of roots and minimized non VAM interactions between the plants. All plants were colonized by the VAM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. The effects of N input to N-sufficient soybean plants through N2-fixation or N-fertilization on associated maize-plant growth and nutrition were compared to those of an N-deficient (nonnodulating, unfertilized) soybean control. Maize, when associated with the N-fertilized soybean, increased 19% in biomass, 67% in N content and 77% in leaf N concentration relative to the maize plants of the N-deficient association. When maize was grown with nodulated soybean, maize N content increased by 22%, biomass did not change, but P content declined by 16%. Spore production by the VAM fungus was greatest in the soils of both plants of the N-fertilized treatment. The patterns of N and P distribution, as well as those of the other essential elements, indicated that association with the N-fertilized soybean plants was more advantageous to maize than was association with the N2-fixing ones.  相似文献   
148.
The morphological development and N uptake patterns of spring barley (Hordeum vulgare L.) genotypes of Northern European (Nordic) and Pacific Northwest US (PNW) origin were compared under two diurnally fluctuating root temperature regimes in solution culture. The two regimes, 15/5°C and 9/5°C day maximum/night minimum temperatures, simulated soil temperature differences between tilled vs. heavy-residue, no-till conditions, respectively, observed during early spring in eastern Washington. Previous field experiments indicated that some of the Nordic genotypes accumulated more N and dry matter than the PNW cultivars during early spring under no-till conditions. The objective of this experiment was to determined whether these differences 1) are dependent on the temperature of the rooting environment, and 2) are correlated with genotypic differences in NH4 + and NO3 uptake. Overall, shoot N and dry matter accumulation was reduced by 40% due to lower root temperatures during illumination. Leaf emergence was slowed by 14 to 22%, and tiller production was also inhibited. All genotypes absorbed more ammonium than nitrate from equimolar solutions, and the proportion of total N absorbed as NH4 + was slightly higher in the 9/5°C than the 15/5°C regime. A Finnish genotype, HJA80201, accumulated significantly more shoot N than the PNW cultivars, Clark and Steptoe, and also more than a Swedish cultivar, Pernilla, in the 9/5°C regime. In the 15/5°C regime Steptoe did not differ in shoot N from the Nordic genotypes, while Clark remained significantly lower. These differences were not correlated to relative propensity for N form. Root lengths of the Nordic genotypes were significantly greater than the PNW genotypes grown under the 9/5°C regime, while the root lengths in the warmer root temperture regime were not significantly different among genotypes. Higher root elongation rates under low soil temperature conditions may be an inherent adaptive mechanism of the Nordic genotypes. Overall, the data indicate that lower maximum daytime temperatures of the soil surface layer likely account for a significant portion of the growth reductions and lower N uptake observed in no-till systems.  相似文献   
149.
Effects of different concentrations of active ingredient of the herbicide pyramin on metabolic activities of Fusarium solani and Sclerotium rolfsii were examined. High concentrations of this herbicide (1000 and 2000 g mL-1 for F. solani and 100 and 200 g mL-1 for S. rolfsii) had inhibitory effects on the metabolic activities of both fungi. These were demonstrated by significant decreases in growth, and increases in rates of CO2 evolved, O2 consumed and keto acids produced. These were accompanied by increased rates of sugar, nitrate and inorganic phosphorus absorption as well as lowered rates of synthesis of carbohydrates and insoluble nitrogenous (including protein) and phosphorus (including RNA-P and DNA-P) compounds. In addition, rates of excretion of both nitrogen and phosphorus fractions by the mycelial mats were increased.A concentration of 25 g mL-1 exerted little or no effect on the metabolic activities of these fungi, although S. rolfsii was somewhat sensitive to this concentration.  相似文献   
150.
Two Rhizobium strains (WU1001 and WU1008) were isolated from nodules of Acacia redolens growing in saline areas of south-west Australia, and two strains selected from the University of Western Australia's culture collection (WU429 isolated from A. saligna and WU433 from A. cyclops). The growth of each in buffered, yeast extract mannitol broth culture was largely unaffected by salt up to 300 mM NaCl. A slight increase in lag time occurred at concentrations of 120 mM NaCl and above, but cell number at the static phase was not affected. Each of the four Rhizobium strains tested accumulated Na+ but showed decreasing levels of sugar with increasing salt in the external medium. Amino acid levels also increased, in some cases by more than tenfold. However, the relative proportion of each remained fairly constant in the bacteria, irrespective of salt treatment. Only trace quantities of proline were detected and there was no increase in this amino acid with salt. Acidic amino acids (glutamate and aspartate) remained as a constant proportion.Rhizobium strains WU429, WU1001 and WU1008 produced effective nodules on both A. cyclops and A. redolens grown in sand with up to 80 mM NaCl (added in nutrient solutions free of nitrogen). Strain WU433 was highly infective on both Acacia species tested at low salt concentrations (2–40 mM NaCl), but infection was sensitive to salt levels at 120 mM NaCl and above. Nodules formed with strain WU433 were, however, ineffective on both A. redolens and on A. cyclops and showed nil or negligible rates of acetylene reduction at all salt concentrations. Strains WU429, WU1001 and WU1008 in combination with a highly salt-tolerant provenance of A. redolens formed symbioses which did not vary significantly in nodule number and mass, specific nodule activity or total N content irrespective of salt level up to 160 mM NaCl. On a more salt sensitive provenance of A. redolens and on A. cyclops the infectivity and effectivity of the Rhizobium strains tested usually decreased as the external salt concentration increased. These data are interpreted to indicate that tolerance of the legume host was the most important factor determining the success of compatible Rhizobium strains in forming effective symbioses under conditions of high soil salinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号