首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11810篇
  免费   634篇
  国内免费   755篇
  2024年   20篇
  2023年   122篇
  2022年   195篇
  2021年   238篇
  2020年   362篇
  2019年   438篇
  2018年   416篇
  2017年   328篇
  2016年   334篇
  2015年   322篇
  2014年   585篇
  2013年   869篇
  2012年   334篇
  2011年   566篇
  2010年   346篇
  2009年   465篇
  2008年   510篇
  2007年   531篇
  2006年   437篇
  2005年   460篇
  2004年   438篇
  2003年   438篇
  2002年   402篇
  2001年   292篇
  2000年   249篇
  1999年   241篇
  1998年   253篇
  1997年   262篇
  1996年   284篇
  1995年   223篇
  1994年   204篇
  1993年   202篇
  1992年   201篇
  1991年   163篇
  1990年   162篇
  1989年   150篇
  1988年   116篇
  1987年   132篇
  1986年   111篇
  1985年   115篇
  1984年   139篇
  1983年   105篇
  1982年   120篇
  1981年   84篇
  1980年   70篇
  1979年   57篇
  1978年   25篇
  1977年   26篇
  1976年   21篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
The complex of a bacterial alkaline serine proteinase, subtilisin BPN’, with its proteinaceous inhibitorStreptomyces subtilisin inhibitor is unique in several respects, compared with other similar complexes containing serine proteinases of trypsin family. In addition to the usual antiparallelβ-sheet involving P1-P3 residues of the inhibitor, P4-P6 residues form antiparallelβ-sheet with a previously unnoticed chain segment (the ‘S4-6 site’) of subtilisin. The ‘S4-6 site’ does not exist in serine proteinases of trypsin family, whether of mammalian or microbial origin. Global induced-fit movement seems to occur on the ‘trapped substrate’Streptomyces subtilisin inhibitor: a channel-like structure in SSI remote from the contact region becomes about 2 Å wider upon complexing with subtilisin. Main role of the secondary contact region ofStreptomyces subtilisin inhibitor seems to support the reactive site loop (primary contact region). Steric homology for the two contact regions is so high between the inhibitors ofStreptomyces subtilisin inhibitor family and those of pancreatic secretory trypsin inhibitor-ovomucoid inhibitor family that it seems to favour a divergent evolution and to support the general notion as to the relationship of prokaryotic and eukaryotic genes put forwarded by Doolittle(Nature (London),272, 581, 1978).  相似文献   
113.
Summary We have previously reported the transformation by Rous sarcoma virus of a cloned epithelial cell line (BRL) established from Buffalo rat liver by H. Coon. The nontransformed (BRL) and transformed (RSV-BRL) cells grew at comparable rates in culture, whereas only the transformed cells were tumorigenic in vivo. We report here on the existence in rat and mouse sera of a growth inhibitor for the nontransformed BRL cells. The transformed BRL cells (RSV-BRL) were insensitive to this inhibitor. The inhibitory activity was not prominent in sera from other species of animals tested except for rabbit; this serum inhibited the growth of RSV-BRL cells more strongly than that of BRL cells. The growth inhibitor was partially purified from rat serum. It is a protein free of lipid and has a molecular weight of about 220 000. The inhibitor could be separated into three components of pI 4.6, 5.2 (major) and 5.6 by isoelectric electrophoresis. EDITOR'S STATEMENT Although compelling theoretical arguments sometimes can be made for the likely existence of growth-inhibitory substances of physical relevance in the control of cell proliferation, experiments aimed at identifying and studying such factors often are difficult to design and interpret, and little strong data exists to suggest that growth-inhibitory substances are important regulatorsin vivo. The information presented in this paper represents a start toward developing a useful system for studying growth-inhibitory factor. David W. Barnes  相似文献   
114.
Proteolytic enzymes were characterized in the midgut and the excreta of the stable fly Stomoxys calcitrans (L) with proteins, synthetic substrates, and inhibitors. Inhibition studies suggested trypsinlike activity in sugar-fed fly midguts, whereas excreta and blood-fed fly guts exhibited other proteases. Trypsinlike activity in midguts removed 20 and 30 h after a blood meal increased from 20% to 50% of the total proteolytic enzymes present. Trypsinlike activity was inhibited with human sera, trypsin-specific inhibitors, and a protein isolated from the stable fly thorax. When human albumin and globulin fractions were incubated with trypsinlike enzymes isolated from the midgut and excreta, the albumin fraction was less inhibitory than the globulin fractions and was readily hydrolyzed by the proteolytic enzymes. These results may indicate that the proteolytic enzymes produce an abortive complex with the globulin fractions of the sera. Such a complex may explain the temporary inhibition of proteolysis by the blood meal. Soybean trypsin inhibitor fed to stable flies caused 50% inhibition in proteolytic activity in the midguts of sugar-fed stable flies and 25% inhibition in the midguts of blood-fed stable flies. Complete inhibition of proteolytic enzyme activity was achieved only in vitro. pH profiles of proteolytic enzyme activity isolated from the excreta of blood-fed stable flies indicated that several proteolytic enzymes were excreted.  相似文献   
115.
Light control of extractable nitrate reductase activity in higher plants   总被引:3,自引:0,他引:3  
Light regulation of extractable nitrate reductase (NR) activity of higher plants is complicated by: 1) involvement of several photoreceptors, 2) differences in the relative importance of the several photoreceptors among species and among developmental stages of the same species, 3) two types of effects – alteration of activity of existing NR and influences on de novo synthesis of NR, and 4) differing forms of NR within the same species. The interrelationships of all of these factors are not clear. It may be that each system will have to be understood separately before a general model can be developed. Immunochemical quantification of NR from systems exposed to varied light regimes may enhance our understanding of this area. Currently few general conclusions can be made; however, we think that the following statements are true or are usually true: (1) Phytochrome influences extractable NR activity by the low irradiance response and high irradiance response in etiolated tissues. (2) In de-etiolated tissues phytochrome can influence NR activity decay at the end of a light period by the low irradiance response. (3) The phytochrome equilibrium or the absolute level of Pfr influences extractable NR activity in green tissues under white light. (4) Blue light influences extractable NR activity through phytochrome and another, unknown, blue light-absorbing pigment. Flavins may be involved in vitro in reactivation of inactivated NR. (5) Photosynthesis does not directly influence the induction of the forms of NR that require substrate and light for induction. (6) In some tissues there appears to be a close link between nitrite-reducing and nitrate-reducing capabilities. (7) Much circumstantial evidence from kinetic and protein-synthesis-inhibitor studies and the only available immunochemical data indicate that light induces de novo synthesis of NR, resulting in increased extractable activity.  相似文献   
116.
Mode of high temperature injury to wheat during grain development   总被引:5,自引:0,他引:5  
High temperature stress adversely affects wheat growth in many important production regions, but the mode of injury is unclear. Wheat ( Triticum aestivum L. cv. Newton) was grown under controlled conditions to determine the relative magnitude and sequences of responses of source and sink processes to high temperature stress during grain development. Regimes of 25°C day/15°C night, 30°C day/20°C night, and 35°C day/25°C night from 5 days after anthesis to maturity differentially affected source and sink processes. High temperatures accelerated the normal decline in viable leaf blade area and photosynthetic activities per unit leaf area. Electron transport, as measured by Hill reaction activity, declined earlier and faster than other photosynthetic processes at the optimum temperature of 25/15 °C and at elevated temperatures. Changes in RUBP carboxylase activities were similar in direction but smaller in magnitude than changes in photosynthesic rate. Increased protease activity during senscence was markedly accentuated by high temperature stress. Specific protease activity increased 4-fold at 25/15 °C and 28-fold at 35/25 °C from 0 to 21 days after initiation of temperature treatments. Grain-filling rate decreased from the lowest to the highest temperature, but the change was smaller than the decrease in grain-filling duration at the same temperatures. We concluded that a major effect of high temperature is acceleration of senescence, including cessation of vegetative and reproductive growth, deterioration of photosynthetic activities, and degradation of proteinaceous constituents.  相似文献   
117.
CAM植物按其对环境的反应可分为两种类型:即专一CAM植物和兼性CAM植物。前者不易受外界环境的变化而改变其CAM性质;后者的光合型可随季节和水分胁迫等而发生变化,也可因人工诱导作用而使其由C_3型转变为CAM型。  相似文献   
118.
水稻品种超氧物歧化酶(SOD)活性与氧抑光合的关系   总被引:1,自引:0,他引:1  
O_2抑光合程度不同的水稻品种,SOD活性存在差异。在40%O_2下,SOD活性被诱导增加水平高、延续时间长的品种,表现O_2抑光合程度小,反之则O_2抑光合程度大。在自然条件下,强光、高温都是诱导SOD活性变化的因素。选择SOD活性高、O_2抑光合程度小的种质资源可能有利于适应对光合不利的逆境条件。  相似文献   
119.
Insulin (100 U/ml) stimulated protein synthesis and PGF2 release in isolated rabbit muscle, but had little effect on the rate of protein degradation. The effect of insulin persisted for at least 5 h after removal of the hormone. Indomethacin, added at the start of the incubation, inhibited the stimulatory effect of insulin on protein synthesis and PGF2 release, but did not block the binding of iodinated insulin. When added 2 h after insulin, indomethacin did not inhibit the stimulation of protein synthesis but completely inhibited the increase in PGF2 release. The results suggest that the stimulation of protein synthesis by insulin is mediated by metabolites of membrane phospholipids but that these changes are involved during the phase of response that immediately follows the binding of insulin to its receptor.  相似文献   
120.
The fluorescence of the chlorophyll associated with photosystem II was studied in seedling and flag leaves of Triticum species. Seedling leaves of the diploid species T. urartu had higher values of t (the normalised area over the fluorescence induction curve of DCMU treated leaves) than those of the other species studied which included hexaploid T. aestivum. However this difference was not evident when leaves were grown in a low light intensity (40 µmol quanta of photosynthetically active radiation m–2 s–1). The smaller total number of chlorophyll molecules per photosystem II reaction centre (chl/RCII) in T. urartu (177) as compared with the other species (mean 234) was deduced from the observed differences in t. As a consequence of its lower chl/RCII, despite slightly lower chlorophyll content (mg m–2), T. urartu had a greater density of reaction centres than the other species (2880 cf 2230 nmol m–2 of leaf). Consistent with the lower chl/RCII of T. urartu, it had a higher chlorophyll a/b ratio than the other genotypes. Seedling leaves of T. urartu had higher light saturated rates of photosynthesis than those of the other species, when grown at high light, a difference associated with reaction centre density.In flag leaves, when the complications due to variable development and senescence patterns were eliminated, t of the diploid species including T. urartu was lower than that of T. aestivum. The lower apparent chl/RCII of T. urartu arose partly because the molar extinction coefficient of the chlorophyll in the leaves of T. urartu was greater than in T. aestivum. However, the density of PS II reaction centres was slightly lower for the diploid species studied because their chlorophyll contents were lower than the hexaploids.The validity of the method for estimating chl/RCII from fluorescence transients is discussed. The possibility is considered that the difference in apparent chl/RCII of flag and seedling leaves of R. urartu as compared to the other five genotypes is a consequence of its different adaptive response to the spectral quality of the light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号