首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   47篇
  国内免费   83篇
  942篇
  2024年   2篇
  2023年   13篇
  2022年   6篇
  2021年   10篇
  2020年   28篇
  2019年   25篇
  2018年   18篇
  2017年   27篇
  2016年   30篇
  2015年   23篇
  2014年   31篇
  2013年   71篇
  2012年   31篇
  2011年   34篇
  2010年   25篇
  2009年   34篇
  2008年   25篇
  2007年   39篇
  2006年   22篇
  2005年   20篇
  2004年   27篇
  2003年   23篇
  2002年   18篇
  2001年   24篇
  2000年   31篇
  1999年   16篇
  1998年   21篇
  1997年   15篇
  1996年   19篇
  1995年   21篇
  1994年   17篇
  1993年   18篇
  1992年   26篇
  1991年   17篇
  1990年   6篇
  1989年   24篇
  1988年   16篇
  1987年   11篇
  1986年   15篇
  1985年   20篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   1篇
  1973年   1篇
排序方式: 共有942条查询结果,搜索用时 15 毫秒
41.
Regulation of growth and development by photoperiod was studied in a population of the speckled wood butterfly, Purarge aegeria L. (Lepidoptera: Satyrinae), from southern Sweden. Individuals were reared in a range of photoperiodic regimes (9L. to 22L) and temperatures (13°C to 21° C). Plasticity was found for important life-history traits- generation time, growth rate and final weight and seasonal regulation of development in response to photoperiod was found to occur at two levels. Purarge aegeria hibernates as a third instar larva or in the pupal stage, cantering one of four major developmental pathways in response to photoperiod: (1) direct development in both the larval and pupal stages, (2) pupal winter diapause with or (3) without a preceding larval summer diapause, or (4) larval winter diapause. In addition to this high-level regulation of individual development, larval growth rate and pupal development rate also appear to be finally regulated by photoperiod within each major pathway. As photoperiods decreased from 22 h to 17 h at 17° C, growth rate among directly developing larvae increased progressively, as was the case for larva? developing according to a univoltine life cycle from 17 h to 14 h. At two photoperiods, 13 h and 16 h (corresponding to shifts between major pathways), both larval and pupal development were extremely variable with the fastest individuals developing directly and the slowest developing with a diapause. This indicates a gradual nature of diapause itself, suggesting that the two level may not he fundamentally different.  相似文献   
42.
Fluctuation in levels of endogenous free IAA has been followed in the SD plant Chenopodium rubrum under photoperiodic conditions inductive or not inductive of flowering. Endogenous IAA was measured fluorimetrically as -pyrone. The level of IAA shows little fluctuation under continuous illumination. An endogenous rhythm of IAA fluctuation was found in plants transferred from light to continuous darkness, with a natural period of 30 hrs. The troughs of minimum IAA level within the endogenous rhythm coincided with the peaks in the endogenous rhythm of flowering response, which possessed the same period length. The concentration of IAA in the shoot always decreased at the end of cycles of dark period that induce flowering. The results are discussed in relation to the role of IAA in flowering of SD plants.  相似文献   
43.
Poa bulbosa L., like many other Mediterranean geophytes, grows in the winter and enters a phase of summer dormancy in the spring. Summer dormancy enables these plants to survive the hot and dry summer. Long days are the main environmental factor active in the induction of summer dormancy in P . bulbosa and elevated temperatures accelerate dormancy development. P . bulbosa becomes dormant earlier than most other species that grow actively in the winter. Previous studies suggested that pre-exposure of P . bulbosa to short days and low temperatures during the autumn and early winter increased its sensitivity to photoperiodic induction in late winter, and thus enabled the early imposition of dormancy. To study this hypothesis, experiments were carried out under controlled photothermal conditions in the phytotron, under natural daylight extended with artificial lighting. The critical photoperiod for induction of summer dormancy at an optimal temperature (22/17°C day/night) was between 11 and 12 h. Photoperiods shorter than 12 h were noninductive, while 14- and 16-h days were fully inductive. A night break of 1 h of light given at the middle of the dark period of an 8-h photoperiod also resulted in full induction of dormancy. Pre-exposure to either low temperature (chilling at 5°C) or to short days of 8 h (SD) enhanced the inductive effect of subsequent 16-h long days (LD). The enhancing effect of chilling and SD increased with longer duration, i.e. fewer LDs were required to impose dormancy. However, the day-length during the low-temperature pretreatment had no effect on the level of induction at the following LD. Chilling followed by SD did not induce dormancy. The relevance of these responses to the development and survival of P . bulbosa in its natural habitat is discussed.  相似文献   
44.
温度与光周期是环境季节性变化的最直接表现因子及时间变化指示标志,对动物的形态、生理及行为产生重要的影响.本文以白头鹎为研究对象,探讨了不同温度与光周期对其体质量、能量收支和消化道形态的影响,分析了能量收支与消化道形态特征的关系.将28只白头鹎(12雄16雌)分为4组:暖温长光组(30℃,16 L8 D;3雄4雌)、暖温短光组(30 ℃,8 L16 D;3雄4雌)、低温长光组(10 ℃,16 L8 D;3雄4雌)和低温短光组(10 ℃,8 L16 D;3雄4雌).结果表明: 低温与短光照可促进白头鹎的体质量、摄入能及同化能明显增加,同时温度与光周期的交互作用对白头鹎的摄入能及同化能影响显著.低温条件下,胃、小肠、直肠及总消化道的湿质量及干质量明显增加.残差分析表明,小肠与总消化道的长度及干质量与摄入能和同化能显著相关.表明低温与短光照下白头鹎通过增加体质量、能量摄入和改变消化道形态来应对严酷的环境条件.  相似文献   
45.
46.
Spatially varying selection can lead to population‐specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location‐specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population‐specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population‐specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species.  相似文献   
47.
Nereidae are vital to the functioning of estuarine ecosystems and are major components in the diets of over-wintering birds and commercial fish. They use environmental cues to synchronize reproduction. Photoperiod is the proximate cue, initiating vitellogenesis in a temperature-compensated process. The prevailing paradigm in Nereidae is of a single ‘juvenile’ hormone controlling growth and reproduction. However, a new multi-hormone model is presented here that integrates the environmental and endocrine control of reproduction. This is supported by evidence from in vitro bioassays. The juvenile hormone is shown to be heat stable and cross reactive between species. In addition, a second neuro-hormone, identified here as a gonadotrophic hormone, is shown to be present in mature females and is found to promote oocyte growth. Furthermore, dopamine and melatonin appear to switch off the juvenile hormone while serotonin and oxytocin promote oocyte growth. Global warming is likely to uncouple the phase relationship between temperature and photoperiod, with significant consequences for Nereidae that use photoperiod to cue reproduction during the winter in northern latitudes. Genotypic adaptation of the photoperiodic response may be possible, but significant impacts on fecundity, spawning success and recruitment are likely in response to short-term extreme events. Endocrine-disrupting chemicals may also impact on putative steroid hormone pathways in Nereidae with similar consequences. These impacts may have significant implications for the functional role of Nereidae and highlight the importance of comparative endocrinology studies in these and other invertebrates.  相似文献   
48.
Seasonal reproduction is common among mammals at all latitudes, even in the deep tropics. This paper (i) discusses the neuroendocrine pathways via which foraging conditions and predictive cues such as photoperiod enforce seasonality, (ii) considers the kinds of seasonal challenges mammals actually face in natural habitats, and (iii) uses the information thus generated to suggest how seasonal reproduction might be influenced by global climate change. Food availability and ambient temperature determine energy balance, and variation in energy balance is the ultimate cause of seasonal breeding in all mammals and the proximate cause in many. Photoperiodic cueing is common among long-lived mammals from the highest latitudes down to the mid-tropics. It is much less common in shorter lived mammals at all latitudes. An unknown predictive cue triggers reproduction in some desert and dry grassland species when it rains. The available information suggests that as our climate changes the small rodents of the world may adapt rather easily but the longer lived mammals whose reproduction is regulated by photoperiod may not do so well. A major gap in our knowledge concerns the tropics; that is where most species live and where we have the least understanding of how reproduction is regulated by environmental factors.  相似文献   
49.
以新疆十字花科典型早春短命植物抱茎独行菜(Lepidium perfoliatum L.)为材料,分别在不同环境、不同土壤基质及不同春化时间下栽培,以探讨环境因素对抱茎独行菜抽薹开花的影响。结果表明:抱茎独行菜种子在蛭石∶珍珠岩(3∶1)中的出苗率显著高于营养土和自然生境土壤,基质对抱茎独行菜植株是否抽薹无显著影响,但影响其抽薹的早晚及结实特性;人工4℃春化对3种不同栽培环境中于阳台生长植株的抽薹有明显促进作用,而对培养室及户外环境中栽培植株是否抽薹无显著影响;抱茎独行菜抽薹开花对光照和温度的响应最明显,光照时间由短变长与苗期一定时间的低温之间的相互作用是促使抱茎独行菜抽薹开花的关键因素。  相似文献   
50.
【目的】滞育诱导期进行短光照处理可影响昆虫耐寒性。为明确光周期对中华通草蛉Chrysoperla sinica (Tjeder)耐寒性的影响, 针对中华通草蛉滞育解除过程及非滞育虫态的耐寒性进行了一系列研究。【方法】测定了中华通草蛉自然越冬成虫的过冷却点(supercooling point, SCP)以及长光周期(15L∶9D)和短光周期(9L∶15D)条件下自然越冬成虫在滞育解除过程中在-12℃下的死亡率, 并测定了室内长、 短两种光周期下实验种群2龄和3龄幼虫的过冷却点(SCP)、 结冰点(freezing point, FP)以及-7℃下的死亡率。【结果】中华通草蛉12月份的自然越冬成虫SCP集中在-10~-14℃之间。SCP低于-12℃的个体占43.70%, 且-12℃处理1 d死亡率为62.00%。-12℃处理1 d条件下的长、 短光周期处理自然越冬成虫, 除处理0 d外, 长光周期处理死亡率均高于短光周期处理的, 且在处理15 (P=0.012), 20 (P=0.01)和25 d (P=0.001)差异显著。中华通草蛉试验种群相同龄期幼虫在短光周期下的SCP和FP均高于长光周期下, 但差异不显著(P>0.05); 但在-7℃下, 2龄幼虫短光周期下的低温死亡率为67.00%±4.04%, 显著低于长光周期下的低温死亡率(78.00%±1.33%)(P=0.011), 3龄幼虫短光周期条件下低温死亡率为24.33%±1.33%, 显著低于长光周期下的低温死亡率(53.00%±3.46%)(P=0.002)。【结论】中华通草蛉为结冰敏感型, 诱导滞育的短光照处理可提高其幼虫期及滞育解除过程中成虫的耐寒能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号