首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3195篇
  免费   256篇
  国内免费   562篇
  2024年   12篇
  2023年   62篇
  2022年   60篇
  2021年   93篇
  2020年   88篇
  2019年   114篇
  2018年   90篇
  2017年   91篇
  2016年   120篇
  2015年   79篇
  2014年   101篇
  2013年   152篇
  2012年   90篇
  2011年   109篇
  2010年   84篇
  2009年   112篇
  2008年   130篇
  2007年   144篇
  2006年   162篇
  2005年   162篇
  2004年   125篇
  2003年   169篇
  2002年   124篇
  2001年   139篇
  2000年   99篇
  1999年   90篇
  1998年   71篇
  1997年   83篇
  1996年   81篇
  1995年   71篇
  1994年   82篇
  1993年   107篇
  1992年   74篇
  1991年   51篇
  1990年   90篇
  1989年   59篇
  1988年   67篇
  1987年   42篇
  1986年   37篇
  1985年   42篇
  1984年   41篇
  1983年   15篇
  1982年   55篇
  1981年   28篇
  1980年   25篇
  1979年   21篇
  1978年   10篇
  1977年   12篇
  1976年   17篇
  1972年   8篇
排序方式: 共有4013条查询结果,搜索用时 31 毫秒
121.
Persson  Olle A  Eriksson  Harry  Johansson  Ulf 《Plant and Soil》1995,168(1):249-254
Long-term field experiments in Norway spruce stands on fertile sites (site indices 27–35 m) in southwestern Sweden were analysed with respect to volume increment. Three treatments were included (0=No fertilization, N = Fertilization with N, NP = Fertilization with N and P).Volume growth was monitored for 18 years in 10 blocks. No significant differences in annual volume increment between the treatments were detected. Volume increments in the N treatment were 97%, 99% and 107% as high as those in the 0 treatment for the periods 1–5, 6–10 and 11–15 years after the first fertilization. Corresponding values for the NP treatment were 104%, 108% and 110%, indicating that P has a small positive effect.The amount of N-fertilization would correspond to an annual N deposition of 20 kg ha-1 during the next 30 years in southwestern Sweden. For this period, the results imply that this N deposition would not affect the growth of Norway spruce stands on fertile sites.  相似文献   
122.
The relative uptake rates of N, P, K, S, Ca, Mg, Fe, Mn, Zn, Cu, and Al were estimated in beech seedlings pot cultured in the field in six acid soils (treatments). The relative uptake rates were compared with the relative growth rates. The relative uptake rates of N, K and Ca agreed well with the growth rates of the seedlings irrespective of widely differing soil conditions (acid sand-clayey till, pH 4–6). The relative uptake rates of P, Fe, and Al differed from that predicted by the growth rate. The uptake rates of Fe and Al were highest at the lowest growth rates, and the P uptake rate was lower than the growth rate in these treatments. Thus the P availability probably limited growth in an eluvial (E) horizon of a podzol, and possibly in the illuvial (B) horizon of a podzol and in an acid clayey till (Dystric Cambisol). Low P uptake was associated with a tendency towards higher relative root growth rates. In terms of the concept of steady state nutrition the high relative root growth rate in some treatments may be interpreted as an acclimation to low P supply. The P limitation seemed to be related to interactions among Fe, Al and organic compounds of the soil solution.FAX no: +4646104423  相似文献   
123.
Plant nutrition and growth: Basic principles   总被引:2,自引:0,他引:2  
Soil compaction may restrict shoot growth of sugar beet plants. Roots, however, are the plant organs directly exposed to soil compaction and should therefore be primarily affected. The aim of this study was to determine the influence of mechanical resistance and aeration of compacted soil on root and shoot growth and on phosphorus supply of sugar beet. For this purpose, a silt loam soil was adjusted to bulk densities of 1.30, 1.50 and 1.65 g cm–3 and water tensions of 300 and 60 hPa. Sugar beet was grown in a growth chamber under constant climatic conditions for 4 weeks. Both, decrease of water tension and increase of bulk density impeded root and shoot growth. In contrast, the P supply of the plants was differently affected. At the same air-filled pore volume, the P concentration of the shoots was reduced by a decrease of soil water tension, but not by an increase of bulk density. Both factors also reduced root length and root hair formation, however, in compacted soil the plants partly substituted for the reduction of root size by increasing the P uptake efficiency per unit of root. Shoot growth decreased when root growth was restricted. Both characteristics were closely related irrespective of the cause of root growth limitation by either compaction or water saturation. It is therefore concluded that shoot growth in both the compacted and the wet soil was regulated by root growth. The main factor impeding root growth in compacted soil was penetration resistance, not soil aeration.FAX no corresponding author: +49551 5056299  相似文献   
124.
Zoe G. Cardon 《Plant and Soil》1995,187(2):277-288
Atmospheric CO2 concentrations can influence ecosystem carbon storage through net primary production (NPP), soil carbon storage, or both. In assessing the potential for carbon storage in terrestrial ecosystems under elevated CO2, both NPP and processing of soil organic matter (SOM), as well as the multiple links between them, must be examined. Within this context, both the quantity and quality of carbon flux from roots to soil are important, since roots produce specialized compounds that enhance nutrient acquisition (affecting NPP), and since the flux of organic compounds from roots to soil fuels soil microbial activity (affecting processing of SOM).From the perspective of root physiology, a technique is described which uses genetically engineered bacteria to detect the distribution and amount of flux of particular compounds from single roots to non-sterile soils. Other experiments from several labs are noted which explore effects of elevated CO2 on root acid phosphatase, phosphomonoesterase, and citrate production, all associated with phosphorus nutrition. From a soil perspective, effects of elevated CO2 on the processing of SOM developed under a C4 grassland but planted with C3 California grassland species were examined under low (unamended) and high (amended with 20 g m–2 NPK) nutrients; measurements of soil atmosphere 13C combined with soil respiration rates show that during vegetative growth in February, elevated CO2 decreased respiration of carbon from C4 SOM in high nutrient soils but not in unamended soils.This emphasis on the impacts of carbon loss from roots on both NPP and SOM processing will be essential to understanding terrestrial ecosystem carbon storage under changing atmospheric CO2 concentrations.Abbreviations SOM soil organic matter - NPP net primary productivity - NEP net ecosystem productivity - PNPP p-nitrophenyl phosphate  相似文献   
125.
Plantations of radiata pine (P. radiata D.Don) on soils previously under legume based pastures have a high incidence of stem deformity compared with forest soils. A comparison of soil properties and tree nutrition of 5 to 7 year-old radiata pine on former pastures in the first part of the study showed that stem deformity was strongly correlated with mineralisation of soil N and in particular with nitrification. Other soil properties that have changed as a result of pasture improvement, e.g. pH, available P and Mn, were only partially correlated with stem deformity. In the second part of the study, the role of N availability and other soil properties in the expression of deformity was further investigated in a separate field experiment on soils formerly under native eucalypt forest, tobacco cropping, and improved pasture. Young radiata pine plantings were treated with lime, phosphorus, and nitrogen applied as urea and sodium nitrate. Liming increased soil pH by around 1.5 units, raised exchangeable Ca2+ and decreased available Mn. Soil mineral N content was only marginally affected by liming. Superphosphate increased soil available P and raised levels of P in foliage. Changes in soil pH, availability of P, Mn, and B did not affect growth or stem deformity at any of the sites. In contrast, application of N fertilisers at 200 and 600 kg N ha-1 increased mineral N content and stimulated nitrification, particularly at the forest site. The high rate of N fertiliser increased basal area at the forest site by 45%, but also raised the level of stem deformity from 12% to 56%. At the tobacco and pasture sites, this treatment did not increase growth and did not significantly raise stem deformity above the already high basic level of deformity (63%). Implications of stem deformity in young plantations of radiata pine on potential utilisation later in the rotation are discussed.  相似文献   
126.
Narragansett Bay is a relatively well-mixed, high salinity coastal embayment and estuary complex in southern New England (USA). Much of the shoreline is urban and the watershed is densely developed. We have combined our data on C, N, and P inputs to this system, on C, N, and P accumulation in the sediments, and on denitrification with extensive work by others to develop approximate annual mass balances for these elements. The results show that primary production within the bay is the major source of organic carbon (4 times greater than other sources), that land drainage and upstream sewage and fertilizer are the major sources of N, and that landward flowing bottom water from offshore may be a major source of dissolved inorganic phosphorus. Most of the nutrients entering the bay arrive in dissolved inorganic form, though DON is a significant component of the N carried by the rivers. About 40% of the DIN in the rivers is in the form of ammonia. Sedimentation rates are low in most of Narragansett Bay, and it appears that less than 20% of the total annual input of each of these elements is retained within the system. A very small amount of C, N, and P is removed in fisheries landings, denitrification in the sediments removes perhaps 10–25% of the N input, and most of the carbon fixed in the system is respired within it. Stoichiometric calculations suggest that some 10–20% of the organic matter formed in the bay is exported to offshore and that Narragansett Bay is an autotrophic system. Most of the N and P that enters the bay is, however, exported to offshore waters in dissolved inorganic form. This assessment of the overall biogeochemical behavior of C, N, and P in the bay is consistent with more rigorously constrained mass balances obtained using large living models or mesocosms of the bay at the Marine Ecosystem Research Laboratory (MERL).  相似文献   
127.
We tested the hypothesis that P was the nutrient limiting net primary production of a nativeMetrosideros polymorpha forest on a highly weathered montane tropical soil in Hawaii. A factorial experiment used all combinations of three fertilizer treatments: nitrogen (N), phosphorus (P) and a mix of other essential nutrients (OE), consisting primarily of mineral derived cations and excluding N and P. P addition, but not N or OE, increased leaf area index within 12 months, foliar P concentration measured at 18 months, and stem diameter increment within 18 months. Stem growth at 18 months was even greater when trees fertilized with P also received the OE treatment. N and P additions increased leaf litterfall and N and P in combination further increased litterfall. The sequence of responses suggests that increased available P promoted an increase in photosynthetic area which led to increased wood production. P was the essential element most limiting to primary production on old volcanic soil in contrast to the N limitation found on young volcanic soils.  相似文献   
128.
Phosphorus exchange at the sediment-water interface coupled with several parameters were assessed in several reservoirs with geologically different catchment basins and different trophic status in Morocco and France.The results showed that these exchanges were regulated by a combination of factors: physical chemical variability of the environment, the geological composition of catchment basins and the trophic status of the lake.In the hypereutrophic Villerest, iron-bound phosphorus is the major form of phosphorus trapped by the sediment whereas, in Moroccan reservoirs, calcium-bound phosphorus prevailed.We suggest that a drastic control of phosphorus inputs into the waters must be done through a large program of dephosphatization of tributaries to avoid Microcystis aeruginosa bloom formation in Villerest (Aleya et al., 1993) and calcium-bound phosphorus dissociation in Moroccan reservoirs with upward release of bioavailable phosphorus.
Résumé Les échanges de phosphore au niveau de l'interface eau-sédiment couplés á la distribution temporelle de divers éléments chimiques et biologiques ont été étudiés dans divers réservoirs de niveaux trophiques différents, au Maroc et en France.Nos résultats mettent clairement en évidence une influence directe de l'environnement physico-chimique, de la nature géologique des bassins versants et de l'état trophique du lac sur la dynamique du phosphore au sein de cette interface.De plus, il apparait que dans le lac hypereutrophe de Villerest (Roanne, France), le phosphore est majoritairement complexé au fer alors que dans les retenues marocaines, ce sont les complexes phosphore-calcium qui prédominent.Nous préconisons un contrôle drastique des apports en phosphore á travers l'installation et la multiplication d'unités de déphosphatation afin d'éviter d'une part, la prolifération massive de la Cyanobactérie Microcystis aeruginosa á Villetest (Aleya et al., 1994) et d'autre part la dissociation des complexes phhosphore-calcium au sein des retenues marocaines avec libération de phosphore biodisponible.
  相似文献   
129.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   
130.
Karjalainen  Heli  Seppälä  Satu  Walls  Mari 《Hydrobiologia》1997,363(1-3):309-321
The role of nitrogen as a factor controllingphytoplankton biomass was studied in nutrientenrichment incubations in the laboratory using waterfrom pelagic region of two mesotrophic lakes ineastern Finland, Lake Kallavesi (in year 1994) andLake Juurusvesi (in year 1995). We used differentcombinations of phosphorus and nitrogen additions ina total of eight experiments. Furthermore, we includedDaphnia grazing treatment to the experimentaldesign in Lake Juurusvesi experiments. The nitrogentreatments did not increase chlorophyll aconcentration in any of the experiments compared withthe controls. Chlorophyll a content was highestin those nutrient treatments where phosphorus wasadded with or without nitrogen. Daphnia grazingdecreased chlorophyll a concentration comparedwith non-grazed treatments. In some cases grazing alsocaused higher ammonium concentrations. Theseexperiments, as well as the nutrient ratio of the lakewater used, suggest that phosphorus is likely tocontrol the amount of phytoplankton biomass. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号