首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   8篇
  国内免费   5篇
  2023年   1篇
  2022年   3篇
  2020年   3篇
  2019年   9篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   15篇
  2013年   14篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   9篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   5篇
  1996年   1篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   8篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有211条查询结果,搜索用时 62 毫秒
31.
The kinetic mechanism for the reaction catalyzed by the hypoxanthine phosphoribosyltransferase (HPRT) from Trypanosoma cruzi was analyzed to determine the feasibility of designing a parasite-specific mechanism-based inhibitor of this enzyme. The results show that the HPRT from T. cruzi follows an essentially ordered bi–bi reaction, and like its human counterpart also likely forms a dead end complex with purine substrates and the product pyrophosphate. Computational fitting of the kinetics data to multiple initial velocity equations gave results that are consistent with the dead end complex arising when the hypoxanthine- or guanine-bound form of the enzyme binds pyrophosphate rather than the phosphoribosylpyrophosphate substrate of the productive forward reaction. Limited proteolytic digestion was employed to provide additional support for formation of the dead end complex and to estimate the Kd values for substrates of both the forward and reverse reactions. Due to similarities with the kinetic mechanism of the human HPRT, the results reported here for the HPRT from T. cruzi indicate that the design of a mechanism-based inhibitor of the trypanosomal HPRT, that would not also inhibit the human enzyme, may be difficult. However, the results also show that a potent selective inhibitor of the trypanosomal HPRT might be achieved via the design of a bi-substrate type inhibitor that incorporates analogs of moieties for a purine base and pyrophosphate.  相似文献   
32.
Multitargeting involves the application of molecules that are deliberately intended to bind to two or more unrelated cellular targets with high affinity. In epigenetic chemical biology and drug discovery, the rational design of multitargeting agents has evolved to a sophisticated level, and there are now five examples that have reached clinical trials. This review covers recent developments in the field and future prospects.  相似文献   
33.

Background

Mitochondrial biogenesis is crucial for myogenic differentiation and regeneration of skeletal muscle tissue and is tightly controlled by the peroxisome proliferator-activated receptor-γ co-activator 1 (PGC-1) signaling network. In the present study, we hypothesized that inactivation of glycogen synthase kinase (GSK)-3β, previously suggested to interfere with PGC-1 in non-muscle cells, potentiates PGC-1 signaling and the development of mitochondrial biogenesis during myogenesis, ultimately resulting in an enhanced myotube oxidative capacity.

Methods

GSK-3β was inactivated genetically or pharmacologically during myogenic differentiation of C2C12 muscle cells. In addition, m. gastrocnemius tissue was collected from wild-type and muscle-specific GSK-3β knock-out (KO) mice at different time-points during the reloading/regeneration phase following a 14-day hind-limb suspension period. Subsequently, expression levels of constituents of the PGC-1 signaling network as well as key parameters of mitochondrial oxidative metabolism were investigated.

Results

In vitro, both knock-down as well as pharmacological inhibition of GSK-3β not only increased expression levels of important constituents of the PGC-1 signaling network, but also potentiated myogenic differentiation-associated increases in mitochondrial respiration, mitochondrial DNA copy number, oxidative phosphorylation (OXPHOS) protein abundance and the activity of key enzymes involved in the Krebs cycle and fatty acid β-oxidation. In addition, GSK-3β KO animals showed augmented reloading-induced increases in skeletal muscle gene expression of constituents of the PGC-1 signaling network as well as sub-units of OXPHOS complexes compared to wild-type animals.

Conclusion

Inactivation of GSK-3β stimulates activation of PGC-1 signaling and mitochondrial biogenesis during myogenic differentiation and reloading of the skeletal musculature.  相似文献   
34.
35.
Mutations controlling the resistance to 6-mercaptopurine (6-M) and the ability to multiply in a medium with a low concentration of glucose (“glucose-independent” mutants) were induced in cultured Chinese hamster cells by N-nitrosomethylurea (NMU), 5-bromodeoxyuridine (BUdR), UV and X-rays. The chemical agents were found to be very active in induction of mutations to 6-M resistance (NMU and BUdR) and mutations of “glucose independence” (NMU). These agents increase the yield of mutations as compared to the spontaneous mutation rate by about two orders of magnitude. The induced rate of 6-M-resistant mutations by X-rays was 2.0 ? 10−7 per viable cell per roentgen. BUdR approximately equally increases the cell's sensitivity to both inactivating and mutagenic action of X-rays. The maximum induction of mutations to 6-M resistance by UV was observed at 100 erg/mm2. This dose leads to 1 16-fold increase of the mutation frequency as compared to the spontaneous rate. Further increase of the UV dose up to 200 erg/mm2 resulted in a lower yield of mutations per dose unit. The highest yield of mutations to 6-M resistance induced by NMU, BUdR and X-rays was observed if cells were plated in selective medium several generations after the mutagenic treatment. The maximum yield of mutations to 6-M resistance induced by UV and of glucose-independence induced by NMU was recorded if cells were transferred to selective media immediately after treatment. The kinetics of expression of mutations and the decline of their number observed after prolonged incubation of treated cells in nonselective conditions are discussed.  相似文献   
36.
Mutagenic effect of BUdR in diploid human fibroblasts   总被引:2,自引:0,他引:2  
It has only recently been possible to demonstrate the expected mutagenic effect of 5-bromodeoxyuridine (BUdR) in heteroploid hamster cells in culture. We have now extended this observation to diploid human fibroblasts utilizing techniques adapted from the work of Albertini and DeMars on X-ray mutagenesis at the hypoxanthine-guanine phosphoribosyltransferase (HGPRT) locus in these cells. In four separate experiments, fibroblasts from a female donor were exposed to 500 micrograms/ml ethylmethane sulfonate (EMS) or 3 micrograms/ml BUdR yielding survivals of 9% and 5%, respectively. After a 6-day expression period, survivors were plated in selection medium containing 0.3 micrograms/ml 8-azaguanine (8-AG). After 3-5 weeks, azaguanine-resistant colonies were isolated for characterization or stained for counting. The average spontaneous mutation rate/cell/generation was 0.6.10(-6). The average induced mutation rates for EMS and BUdR were 7.8.10(-6) and 6.3.10(-6)/cell/generation, respectively. Similar results were obtained in two experiments with an additional fibroblast line. Mutant colonies isolated following BUdR treatment demonstrated from 1.4 to 61.5% of the HGPRT activity of the parental line and showed at least 8% Barr bodies, excluding the possibility of contamination by Lesch-Nyhan cells. This demonstration of a BUdR effect comparable to that of an alkylating agent or X-irradiation opens the study of mutation due to base-analog substitution in diploid human cells.  相似文献   
37.
Adenosine triphosphate phosphoribosyltransferase (ATP‐PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP‐PRT from the pathogenic ε‐proteobacteria Campylobacter jejuni (CjeATP‐PRT). This enzyme is a member of the long form (HisGL) ATP‐PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP‐PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP‐PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP‐PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme.  相似文献   
38.
Uracil auxotrophic mutants of the hyperthermophilic archaeon Pyrococcus abyssi were isolated by screening for resistance to 5-fluoro-orotic acid (5-FOA). Wild-type strains were unable to grow on medium containing 5-FOA, whereas mutants grew normally. Enzymatic assays of extracts from wild-type P. abyssi and from pyrimidine auxotrophs demonstrated that the mutants are deficient in orotate phosphoribosyltransferase (PyrE) and/or orotidine-5′-monophosphate decarboxylase (PyrF) activity. The pyrE gene of wild-type P. abyssi and one of its mutant derivatives were cloned and sequenced. This pyrE gene could serve as selectable marker for the development of gene manipulation systems in archaeal hyperthermophiles. Received: 29 March 1999 / Accepted: 25 May 1999  相似文献   
39.
40.
Lanthanides have been reported to induce apoptosis in cancer cell lines. Human cervical cancer cell line HeLa was found to be more sensitive to dicitratolanthanum (III) complex ([LaCit2]3−) than other cancer cell lines. However, the effect and mechanism of dicitratoytterbium (III) complex ([YbCit2]3−) on HeLa cells is unknown. Using biochemical and comparative proteomic analyses, [YbCit2]3− was found to inhibit HeLa cell growth and induce apoptosis. Similar to the effects of [LaCit2]3−, proteomics results from [YbCit2]3−-treated cells revealed profound changes in proteins relating to mitochondria and oxidative stress, suggesting that mitochondrial dysfunction plays a key role in [YbCit2]3−-induced apoptosis. This was confirmed by the decreased mitochondrial transmembrane potential and the increased generation of reactive oxygen species in [YbCit2]3−-treated cells. Western blot analysis showed that [YbCit2]3−-induced apoptosis was accompanied by the activation of caspase-9 and specific proteolytic cleavage of PARP, leading to an increase in the pro-apoptotic protein Bax and a decrease in the anti-apoptotic protein Bcl-2. These results suggest a mitochondrial pathway of cell apoptosis in [YbCit2]3−-treated cells, which will help us understand the molecular mechanisms of lanthanide-induced apoptosis in tumor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号