首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1706篇
  免费   123篇
  国内免费   114篇
  2023年   40篇
  2022年   46篇
  2021年   43篇
  2020年   45篇
  2019年   60篇
  2018年   50篇
  2017年   61篇
  2016年   62篇
  2015年   60篇
  2014年   68篇
  2013年   124篇
  2012年   50篇
  2011年   67篇
  2010年   57篇
  2009年   59篇
  2008年   68篇
  2007年   66篇
  2006年   83篇
  2005年   75篇
  2004年   60篇
  2003年   57篇
  2002年   61篇
  2001年   52篇
  2000年   45篇
  1999年   23篇
  1998年   30篇
  1997年   33篇
  1996年   19篇
  1995年   24篇
  1994年   27篇
  1993年   20篇
  1992年   20篇
  1991年   15篇
  1990年   20篇
  1989年   27篇
  1988年   18篇
  1987年   23篇
  1986年   10篇
  1985年   22篇
  1984年   34篇
  1983年   25篇
  1982年   28篇
  1981年   11篇
  1980年   10篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1973年   3篇
  1971年   3篇
排序方式: 共有1943条查询结果,搜索用时 453 毫秒
101.
102.
We report herein the synthesis of new alpha and beta aminooxylated L-fucopyranosyl derivatives for the preparation of glycoclusters through oxime ligation. The glycosylation reaction between activated triacetylated L-fucopyranosyl fluoride and N-hydroxyphthalimide was carried out in the presence of boron trifluoride-diethyl etherate and the stereochemical outcome of glycosylation was compared in dichloromethane, acetonitrile or tetrahydrofuran. Interestingly, an unexpected alpha and beta anomer ratio was obtained in spite of the presence of an acetate participating group at the carbon 2, particularly the 1,2-cis glycosylation was largely favoured in acetonitrile. The resulting alpha and beta N-oxyphthalimido fucopyranosyl derivatives were finally deprotected with methylhydrazine to obtain the corresponding free aminooxylated fucopyranosyls. The structure of single-crystal alpha anomer 12 was analysed by X-ray diffraction.  相似文献   
103.
This study represents an efficient preliminary protocol for in vitro mass production of two Paulownia species (Paulownia hybrid and Paulownia tomentosa) seedlings by using seed explant. Different concentrations of benzyladenine (BA) or Kinetin (Kin) (0.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mg/L) were tested during multiplication stage. The number of shoots/explants was significantly increased with increasing either BA or Kin concentration; however, the shoot length significantly decreased. Data show that media fortified by BA (10 mg/L) combined with indole butyric acid (IBA) at 1.0 or 1.5 mg/L recorded the highest number of shoots/explant (9.13 and 9.25, respectively). After six weeks during the multiplication stage, data cleared that media fortified by benzyladenine (10 mg/L) combined with IBA at 0.5 mg/L recorded the highest shoot length (3.23 cm). The inclusion of indole butyric acid (IBA) or naphthalene acetic acid (NAA) at 1.0–1.5 mg/L to the medium significantly increased the number of roots/plantlets and the highest root length. The results indicated that IBA supplementation was more effective than NAA for in vitro rooting of both Paulownia species. The best treatment for multiplication was 10 mg/L and 8.0–10 mg/L BA for P. hybrid and P. tomentosa, respectively. Peat moss and sand (1:1, v/v) or peat moss and sand (1:2, v/v) were investigated as soil mixture during the adaptation stage. The results referred that Paulownia species plantlets were successfully survived (100 %) in soil mixture contained peat moss: sand (1:2, v/v). This mixture recorded the highest values of plantlet height and number of leaves/plantlets.  相似文献   
104.
105.
106.
Protein–protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.  相似文献   
107.
The adsorption of the CO2/CH4 mixture in coal affects the CO2-enhanced coalbed methane recovery project. To gain a better understanding of CH4 and CO2 interaction with middle-rank coal, we developed a molecular concept with support for the sorption of CH4 and CO2 on Ximing-8 coal (XM-8) (1.8% vitrinite reflectance). A XM-8 coal model was built by using molecular dynamic (MD) simulations. The molecular simulations were established by the Grand Canonical Monte Carlo and MD methods to study the effects of the temperature, pressure, and species bulk mole fraction on the pure component adsorption isotherms, isosteric heat and adsorption selectivity. It turns out that the CO2 selectivity decreases as the pressure and its own bulk mole fraction increases, but it increases as temperature increases, and the selectivity values are not always greater than 1. The interactions between the small molecules and XM-8 were determined by using density functional theory. It was found that the interactions between the CO2 and XM-8 surface is greater, particularly for the heteroatoms than CH4. The adsorption selectivity and interaction were simultaneously used to reveal that the advantageously substituted range is high temperature, low pressure and a high content of heteroatoms.  相似文献   
108.
Human α-glucosidase is an enzyme involved in the catalytic cleavage of the glucoside bond and involved in numerous functionalities of the organism, as well as in the insurgence of diabetes mellitus 2 and obesity. Thus, developing chemicals that inhibit this enzyme is a promising approach for the treatment of several pathologies. Small peptides such as di- and tri-peptides may be in natural organism as well as in the GI tract in high concentration, coming from the digestive process of meat, wheat and milk proteins. In this work, we reported the first tentative hierarchical structure-based virtual screening of peptides for human α-glucosidase. The goal of this work is to discover novel and diverse lead compounds that my act as inhibitors of α-glucosidase such as small peptides by performing a computer aided virtual screening and to find novel scaffolds for further development. Thus, in order to select novel candidates with original structure we performed molecular dynamics (MD) simulations among the 12 top-ranked peptides taking as comparison the MD simulations performed on crystallographic inhibitor acarbose. The compounds with the lower RMSD variability during the MD, were reserved for in vitro biological assay. The selected 4 promising structures were prepared on solid phase peptide synthesis and used for the inhibitory assay, among them compound 2 showed good inhibitory activity, which validated our method as an original strategy to discover novel peptide inhibitors. Moreover, pharmacokinetic profile predictions of these 4 peptides were also carried out with binary QSAR models using MetaCore/MetaDrug applications.  相似文献   
109.
High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic β-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat?/? mice the most sensitive to weight gain out of the three strains tested, followed by apoa1?/? mice. Nevertheless, only apoa1?/? mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic β-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1?/? and lcat?/? mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.  相似文献   
110.
The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the dephosphorylation of PA to produce diacylglycerol, controls the bifurcation of PA into triacylglycerol synthesis and phospholipid synthesis. Pah1 is inactive in the cytosol as a phosphorylated form and becomes active on the membrane as a dephosphorylated form by the Nem1–Spo7 protein phosphatase. We show that the conserved Trp-637 residue of Pah1, located in the intrinsically disordered region, is required for normal synthesis of membrane phospholipids, sterols, triacylglycerol, and the formation of lipid droplets. Analysis of mutant Pah1-W637A showed that the tryptophan residue is involved in the phosphorylation-mediated/dephosphorylation-mediated membrane association of the enzyme and its catalytic activity. The endogenous phosphorylation of Pah1-W637A was increased at the sites of the N-terminal region but was decreased at the sites of the C-terminal region. The altered phosphorylation correlated with an increase in its membrane association. In addition, membrane-associated PA phosphatase activity in vitro was elevated in cells expressing Pah1-W637A as a result of the increased membrane association of the mutant enzyme. However, the inherent catalytic function of Pah1 was not affected by the W637A mutation. Prediction of Pah1 structure by AlphaFold shows that Trp-637 and the catalytic residues Asp-398 and Asp-400 in the haloacid dehalogenase-like domain almost lie in the same plane, suggesting that these residues are important to properly position the enzyme for substrate recognition at the membrane surface. These findings underscore the importance of Trp-637 in Pah1 regulation by phosphorylation, membrane association of the enzyme, and its function in lipid synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号