首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   16篇
  国内免费   8篇
  2022年   5篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   3篇
  2015年   8篇
  2014年   15篇
  2013年   29篇
  2012年   9篇
  2011年   26篇
  2010年   13篇
  2009年   13篇
  2008年   12篇
  2007年   21篇
  2006年   16篇
  2005年   15篇
  2004年   9篇
  2003年   10篇
  2002年   11篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   6篇
  1997年   16篇
  1996年   8篇
  1995年   3篇
  1994年   7篇
  1993年   11篇
  1992年   11篇
  1991年   6篇
  1990年   13篇
  1989年   3篇
  1988年   9篇
  1987年   2篇
  1986年   6篇
  1985年   4篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   11篇
排序方式: 共有445条查询结果,搜索用时 15 毫秒
31.
32.
The switch from gluconeogenesis to glycolysis in yeast has been shown to require ubiquitin-proteasome dependent elimination of the key enzyme fructose-1,6-bisphosphatase (FBPase). Prior to proteasomal degradation, polyubiquitination of the enzyme occurs via the ubiquitin-conjugating enzymes Ubc1, Ubc4, Ubc5 and Ubc8 in conjunction with a novel multi-subunit ubiquitin ligase, the Gid complex. As an additional machinery required for the catabolite degradation process, we identified the trimeric Cdc48Ufd1-Npl4 complex and the ubiquitin receptors Dsk2 and Rad23. We show that this machinery acts between polyubiquitination of FBPase and its degradation by the proteasome.  相似文献   
33.
34.
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.  相似文献   
35.
Obesity and its associated complications, which can lead to the development of metabolic syndrome, are a worldwide major public health concern especially in developed countries where they have a very high prevalence. RIP140 is a nuclear coregulator with a pivotal role in controlling lipid and glucose metabolism. Genetically manipulated mice devoid of RIP140 are lean with increased oxygen consumption and are resistant to high-fat diet-induced obesity and hepatic steatosis with improved insulin sensitivity. Moreover, white adipocytes with targeted disruption of RIP140 express genes characteristic of brown fat including CIDEA and UCP1 while skeletal muscles show a shift in fibre type composition enriched in more oxidative fibres. Thus, RIP140 is a potential therapeutic target in metabolic disorders. In this article we will review the role of RIP140 in tissues relevant to the appearance and progression of the metabolic syndrome and discuss how the manipulation of RIP140 levels or activity might represent a therapeutic approach to combat obesity and associated metabolic disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   
36.
Summary Ananas comosus (L.) Merr. var. Smooth Cayenne plants when grown in vitro under different temperature regimes developed as CAM or as C3 plants. The plants used in this study were developed from the lateral buds of the nodal etiolated stem explants cultured on Murashige and Skoog medium for 3 mo. The cultures were maintained under a 16-h photoperiod for different thermoperiods. With 28°C light/15°C dark thermoperiod, as compared with constant 28°C light and dark, pineapple plants had a succulence index two times greater, and also a greater nocturnal titratable acidity and phosphoenolpyruvate carboxylase (PEPCase) activity, indicating CAM-type photosynthesis. The highest abscisic acid (ABA) level occurred during the light period, 8 h prior to maximum PEPCase activity, while the indole-3-acetic acid (IAA) peak was found during the dark period, coinciding with the time of highest PEPCase activity. These plants were also smaller with thicker leaves and fewer roots, but had greater dry weight. Their leaves showed histological characteristics of CAM plants, such as the presence of greater quantities of chlorenchyma and hypoderm. In addition, their vascular system was more conspicuous. In contrast, under constant temperature (28°C light/dark) plants showed little succulence in the leaves. There was no significant acid oscillation and diurnal variation in PEPCase activity in these plants, suggesting the occurrence of C3 photosynthesis. Also, no diurnal variation in ABA and IAA contents was observed. The results of this study clearly indicate a role for temperature in determining the type of carbon fixation pathway in in vitro grown pineapple. Evidence that ABA and IAA participate in CAM signaling is provided.  相似文献   
37.
The farnesoid X receptor (FXR) has been suggested to play a role in gluconeogenesis. To determine whether FXR modulates the response to fasting in vivo, FXR-deficient (FXR−/−) and wild-type mice were submitted to fasting for 48 h. Our results demonstrate that FXR modulates the kinetics of alterations of glucose homeostasis during fasting, with FXR−/− mice displaying an early, accelerated hypoglycaemia response. Basal hepatic glucose production rate was lower in FXR−/− mice, together with a decrease in hepatic glycogen content. Moreover, hepatic PEPCK gene expression was transiently lower in FXR−/−mice after 6 h of fasting and was decreased in FXR−/−hepatocytes. FXR therefore plays an unexpected role in the control of fuel availability upon fasting.  相似文献   
38.
39.
We determined the kinetics of the reaction of human neuronal enolase and yeast enolase 1 with the slowly-reacting chromophoric substrate d-tartronate semialdehyde phosphate (TSP), each in tris (tris (hydroxymethyl) aminomethane) and another buffer at several Mg2+ concentrations, 50 or 100 μM, 1 mM and 30 mM. All data were biphasic, and could be satisfactorily fit, assuming either two successive first-order reactions or two independent first-order reactions. Higher Mg2+ concentrations reduce the relative magnitude of the slower reaction. The results are interpreted in terms of a catalytically significant interaction between the two subunits of these enzymes.  相似文献   
40.
Aquaporins are channels that allow the movement of water across the cell membrane. Some members of the aquaporin family, the aquaglyceroporins, also allow the transport of glycerol, which is involved in the biosynthesis of triglycerides and the maintenance of fasting glucose levels. Aquaporin-7 (AQP7) is a glycerol channel mainly expressed in adipocytes. The deletion of AQP7 gene in mice leads to obesity and type 2 diabetes. AQP7 modulates adipocyte glycerol permeability thereby controlling triglyceride accumulation and fat cell size. Furthermore, the coordinated regulation of fat-specific AQP7 and liver-specific AQP9 may be key to determine glucose metabolism in insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号