首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1576篇
  免费   89篇
  国内免费   39篇
  1704篇
  2023年   11篇
  2022年   25篇
  2021年   19篇
  2020年   25篇
  2019年   45篇
  2018年   64篇
  2017年   38篇
  2016年   24篇
  2015年   31篇
  2014年   77篇
  2013年   99篇
  2012年   67篇
  2011年   110篇
  2010年   74篇
  2009年   84篇
  2008年   81篇
  2007年   98篇
  2006年   70篇
  2005年   54篇
  2004年   35篇
  2003年   47篇
  2002年   30篇
  2001年   21篇
  2000年   24篇
  1999年   30篇
  1998年   22篇
  1997年   17篇
  1996年   18篇
  1995年   18篇
  1994年   33篇
  1993年   20篇
  1992年   15篇
  1991年   13篇
  1990年   13篇
  1989年   10篇
  1988年   21篇
  1987年   13篇
  1986年   10篇
  1985年   32篇
  1984年   27篇
  1983年   21篇
  1982年   16篇
  1981年   14篇
  1980年   13篇
  1979年   14篇
  1978年   21篇
  1977年   9篇
  1976年   8篇
  1974年   10篇
  1973年   6篇
排序方式: 共有1704条查询结果,搜索用时 8 毫秒
91.
Plant callose synthase complexes   总被引:15,自引:0,他引:15  
Synthesis of callose (-1,3-glucan) in plants has been a topic of much debate over the past several decades. Callose synthase could not be purified to homogeneity and most partially purified cellulose synthase preparations yielded -1,3-glucan in vitro, leading to the interpretation that cellulose synthase might be able to synthesize callose. While a rapid progress has been made on the genes involved in cellulose synthesis in the past five years, identification of genes for callose synthases has proven difficult because cognate genes had not been identified in other organisms. An Arabidopsis gene encoding a putative cell plate-specific callose synthase catalytic subunit (CalS1) was recently cloned. CalS1 shares high sequence homology with the well-characterized yeast -1,3-glucan synthase and transgenic plant cells over-expressing CalS1 display higher callose synthase activity and accumulate more callose. The callose synthase complex exists in at least two distinct forms in different tissues and interacts with phragmoplastin, UDP-glucose transferase, Rop1 and, possibly, annexin. There are 12 CalS isozymes in Arabidopsis, and each may be tissue-specific and/or regulated under different physiological conditions responding to biotic and abiotic stresses.  相似文献   
92.
Choroideremia is an X-chromosome-linked disease that leads to the degeneration of the choriocapillaris, the retinal pigment epithelium and the photoreceptor layer in the eye. The gene product defective in choroideremia, CHM, is identical to Rab escort protein 1 (REP1). CHM/REP1 is an essential component of the catalytic geranylgeranyltransferase II complex (GGTrII) that delivers newly synthesized small GTPases belonging to the RAB gene family to the catalytic complex for post-translational modification. CHM/REP family members are evolutionarily related to members of the guanine nucleotide dissociation inhibitor (GDI) family, proteins involved in the recycling of Rab proteins required for vesicular membrane trafficking through the exocytic and endocytic pathways, forming the GDI/CHM superfamily. Biochemical and structural analyses have now revealed a striking parallel in the organization and function of these two families allowing us to generate a general model for GDI/CHM superfamily function in health and disease.  相似文献   
93.
Within the Alpha class of the mammalian glutathione transferases two variants of subunit interfaces exist. One is conserved among the A4 subunits, whereas the second one is found in all other members of the Alpha class. The ability of the two Alpha class subunit interfaces to adopt a functional heterodimeric structure has been investigated here.The heterodimer GST A1-4 was obtained by co-expression of the two human Alpha class subunits A1 and A4 in Escherichia coli. A histidine tail was added to the N terminus of the A1 subunit to facilitate the purification of the heterodimer. The heterodimer was formed in a small proportion implying that the efficiency of the hybridization between subunit A1 and A4 is less than the propensity for homodimer formation. The hybrid enzyme was stable at low temperatures, but the two subunits dissociated and reassociated into homodimers at 40 degrees C.Three different substrates were used for subunit-selective kinetic characterization of the GST A1-4 heterodimer: 1-chloro-2,4-dinitrobenzene, nonenal and Delta(5)-androstene-3,17-dione. Both subunit A1 and subunit A4 were active in GST A1-4, but the specific activities and k(cat) values were lower than the average values of the two parental isoenzymes. However, at high temperatures the subunits of the hybrid enzyme dissociated and formed homodimers, and the activities increased to expected values. Hence, the low activities of the individual subunits in the heterodimer were reversible. The non-additive kinetic properties of the subunits in the heterodimer therefore highlight the importance of fine-tuned subunit interactions for optimal catalytic efficiency of GST A1-1 and GST A4-4.  相似文献   
94.
Preference for the beta-anomer of galactose attributed to the bovine heart 14 kDa galectin-1 (BHL-14) was re-examined using natural glycoproteins and artificially glycosylated proteins as ligands. Endogenous glycoproteins co-purified with BHL-14 during its affinity chromatographic isolation contained oligosaccharides bearing terminal alpha-linked galactose (TAG) moieties and were superior even to laminin as ligands for homogeneous BHL-14 obtained by high pressure liquid chromatography. Artificially glycosylated proteins prepared by covalent attachment of melibiose to proteins and containing TAG moieties were ligands for BHL-14, unlike their lactose counterparts which contained beta-linked galactose. Enzymatic removal of TAG moieties from the following glycoproteins abolished their recognition by BHL-14: (i) endogenous glycoproteins co-purified with BHL-14; (ii) mouse laminin; and (iii) bovine heart glycoproteins recognized by peanut agglutinin. Modification of TAG in laminin using galactose oxidase also rendered the glycoprotein inert towards BHL-14. Desialylation of human IgG, bovine thyroglobulin or laminin failed to increase the affinity of BHL-14 for these glycoproteins. Since removal of TAG or of sialic acid moiety exposed LacNAc (Gal beta1-->4 GlcNAc) in these glycoproteins, these results indicated that TAG, rather than LacNAc, is a ligand for BHL-14 on N-linked oligosaccharide chains of glycoproteins. Ready recognition of human IgA and jacalin-binding human plasma glycoproteins and non-recognition of human IgG suggested that T antigen (Galbeta1-->3 GalNAc) may also be ligand for galectin-1.  相似文献   
95.
Pneumocystis, an AIDS-associated opportunistic pathogen of the lung has some unusual features. This article focuses on work done by my group to understand the organism's distinct sterols. Although Pneumocystis is closely related to fungi, it lacks the major fungal sterol, ergosterol. Several delta(7) 24-alkysterols synthesized by P. carinii are the same as those reported in some basidiomycete rust fungi. The 24-alkylsterols are synthesized by the action of S-adenosyl-L-methionine:C-24 sterol methyl transferase (SAM:SMT). Fungal SAM:SMT enzymes normally transfer only one methyl group to the C-24 position of the sterol side chain and the cells accumulate C28 24-alkylsterols. In contrast, the P. carinii SAM:SMT and those of some plants catalyze one or two methyl transfer reactions producing both C28 and C29 24-alkylsterols. However, unlike most fungi, plants, and the kinetoplastid flagellates Leishmania and Trypanosoma cruzi, P. carinii does not appear to form double bonds at C-5 of the sterol nucleus and C-22 of the sterol side chain. Furthermore, the P. carinii SAM:SMT substrate preference for C30 lanosterol differs from that of homologous enzymes in any other organisms studied. C31 24-Methylenelanosterol and C32 pneumocysterol, products of SAM:SMT activity on lanosterol, can accumulate in high amounts in some, but not all, human-derived Pneumocystis jiroveci populations.  相似文献   
96.
The ATF1-encoded Saccharomyces cerevisiae yeast alcohol acetyl transferase I is responsible for the formation of several different volatile acetate esters during fermentations. A number of these volatile esters, e.g. ethyl acetate and isoamyl acetate, are amongst the most important aroma compounds in fermented beverages such as beer and wine. Manipulation of the expression levels of ATF1 in brewing yeast strains has a significant effect on the ester profile of beer. Northern blot analysis of ATF1 and its closely related homologue, Lg-ATF1, showed that these genes were rapidly induced by the addition of glucose to anaerobically grown carbon-starved cells. This induction was abolished in a protein kinase A (PKA)-attenuated strain, while a PKA-overactive strain showed stronger ATF1 expression, indicating that the Ras/cAMP/PKA signalling pathway is involved in this glucose induction. Furthermore, nitrogen was needed in the growth medium in order to maintain ATF1 expression. Long-term activation of ATF1 could also be obtained by the addition of the non-metabolisable amino acid homologue beta-L-alanine, showing that the effect of the nitrogen source did not depend on its metabolism. In addition to nutrient regulation, ATF1 and Lg-ATF1 expression levels were also affected by heat and ethanol stress. These findings help in the understanding of the effect of medium composition on volatile ester synthesis in industrial fermentations. In addition, the complex regulation provides new insights into the physiological role of Atf1p in yeast.  相似文献   
97.
The pilus of pathogenic Neisseria is a polymer composed mainly of the glycoprotein, pilin. Recent investigations significantly enhanced characterization of pilin glycan (Pg) from N. gonorrhoeae (gonococcus, GC) and N. meningitidis (meningococcus, MC). Several pilin glycosylation genes were discovered recently from these bacteria and some of these genes transfer sugars previously unknown to be present in neisserial pili. Due to these findings, glycans of GC and MC pilin are now considered more complex. Furthermore, various Pg can be expressed by different strains and variants of GC, as well as MC. Intra-species variation of Pg between different groups of GC or MC can partly be due to polymorphisms of glycosylation genes. In pilus of pathogenic Neisseria, alternative glycoforms are also produced due to phase-variation (Pv) of pilin glycosylation genes. Most remarkably, the pgtA (pilin glycosyl transferase A) gene of GC can either posses or lack the ability of Pv. Many GC strains carry the phase-variable (Pv+) pgtA, whereas others carry the allele lacking Pv (Pv–). Mostly, the GC isolates from disseminated gonococcal infection (DGI) carry Pv+ pgtA but organisms from uncomplicated gonorrhea (UG) contain the Pv– allele. This data suggests that Pv of pgtA facilitates DGI, whereas constitutive expression of the Pv– pgtA may promote UG. Additional implications of Pg in various physiological and pathogenic mechanisms of Neisseria can also be envisaged based on various recent data.  相似文献   
98.
A 3.0-kb region involved in lipopolysaccharide biosynthesis in Bradyrhizobium japonicum was sequenced. One complete open reading frame was identified which encodes a polypeptide of 354 amino acid residues with a predicted molecular mass of 38 209 Da. Expression of the protein using a T7 gene expression system revealed a band of similar molecular mass after sodium dodecyl sulfate polyacrylamide gel electrophoresis. A database search against known gene sequences revealed a significant sequence similarity to the rfaF gene cloned from several Gram-negative bacteria. The rfaF gene is known to encode heptosyltransferase II that transfers a second heptose to the inner core of lipopolysaccharide. The cloned B. japonicum open reading frame was able to functionally complement a rfaF mutant of Salmonella typhimurium SL3789. Transformation of this mutant with the B. japonicum gene restored production of an intact lipopolysaccharide and resistance to the hydrophobic antibiotic, novobiocin. An additional open reading frame having a significant sequence similarity to the rfaD gene was found to be divergently oriented to the rfaF gene.  相似文献   
99.
The glutathione transferases (GSTs) from maize (Zea mays L.) with activities toward the chloroacetanilide herbicide metolachlor and the diphenyl ether herbicide fluorodifen were fractionated into two pools based on binding to affinity columns. Pool 1 GSTs were retained on Orange A agarose and were identified as isoenzymes Zea mays (Zm) GST I-I, Zm GST I-II and Zm GST I-III, which have been described previously. Pool 2 GSTs selectively bound to S-hexyl-glutathione-Sepharose and were distinct from the pool 1 GSTs, being composed of a homodimer of 28.5 kDa subunits, termed Zm GST V-V, and a heterodimer of the 28.5 kDa polypeptide and a 27.5 kDa subunit, termed Zm GST V-VI. Using an antibody raised to Zm GST V-VI, a cDNA expression library was screened and a Zm GST V clone identified showing sequence similarity to the type-III auxin-inducible GSTs previously identified in tobacco and other dicotyledenous species. Recombinant Zm GST V-V showed high GST activity towards the diphenyl ether herbicide fluorodifen, detoxified toxic alkenal derivatives and reduced organic hydroperoxides. Antibodies raised to Zm GST I-II and Zm GST V-VI were used to monitor the expression of GST subunits in maize seedlings. Over a 24 h period the Zm GST I subunit was unresponsive to chemical treatment, while expression of Zm GST II was enhanced by auxins, herbicides, the herbicide safener dichlormid and glutathione. The Zm GST V subunit was more selective in its induction, only accumulating significantly in response to dichlormid treatment. During development Zm GST I and Zm GST V were expressed more in roots than in shoots, with Zm GST II expression limited to the roots.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号