首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1574篇
  免费   89篇
  国内免费   39篇
  2023年   10篇
  2022年   24篇
  2021年   19篇
  2020年   25篇
  2019年   45篇
  2018年   64篇
  2017年   38篇
  2016年   24篇
  2015年   31篇
  2014年   77篇
  2013年   99篇
  2012年   67篇
  2011年   110篇
  2010年   74篇
  2009年   84篇
  2008年   81篇
  2007年   98篇
  2006年   70篇
  2005年   54篇
  2004年   35篇
  2003年   47篇
  2002年   30篇
  2001年   21篇
  2000年   24篇
  1999年   30篇
  1998年   22篇
  1997年   17篇
  1996年   18篇
  1995年   18篇
  1994年   33篇
  1993年   20篇
  1992年   15篇
  1991年   13篇
  1990年   13篇
  1989年   10篇
  1988年   21篇
  1987年   13篇
  1986年   10篇
  1985年   32篇
  1984年   27篇
  1983年   21篇
  1982年   16篇
  1981年   14篇
  1980年   13篇
  1979年   14篇
  1978年   21篇
  1977年   9篇
  1976年   8篇
  1974年   10篇
  1973年   6篇
排序方式: 共有1702条查询结果,搜索用时 968 毫秒
81.
We have shown that treatment with luteolin in leishmanial cells causes loss of mt-DNA and induces apoptosis through mitochondria dependent pathway [Sen, N., Das, B.B., Ganguly, A., Banerjee, B., Sen, T., Majumder, H.K., 2006. Leishmania donovani: intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells. Experimental Parasitology, in press]. Here, we report that mitochondrial DNA depleted leishmanial cells require exogenous sources of pyruvate and uridine to survive and proliferate. The presence of pyruvate and uridine in a growing media help them to produce sufficient amount of glycolytic ATP to maintain the mitochondrial membrane potential in the absence of their functional ETC. Treatment of wild type cells with CPT causes generation of ROS that leads to apoptosis. But unlike the normal cells ROS was not generated in these mt-DNA depleted cells after treatment with CPT. Taken together we have shown for the first time that dyskinetoplastid cells are auxotrophic for pyruvate and uridine and apoptosis cannot be induced in these cells in the presence of CPT. Therefore, the presence of mitochondrial DNA is absolutely necessary for the cytotoxicity of CPT in kinetoplastid parasites.  相似文献   
82.
Plants experiencing salt‐induced stress often reduce cytokinin levels during the early phases of stress‐response. Interestingly, we found that the cytokinin content in the apple rootstock “robusta” was maintained at a high level under salt stress. Through screening genes involved in cytokinin biosynthesis and catabolism, we found that the high expression levels of IPT5b in robusta roots were involved in maintaining the high cytokinin content. We identified a 42 bp deletion in the promoter region of IPT5b, which elevated IPT5b expression levels, and this deletion was linked to salt tolerance in robusta×M.9 segregating population. The 42 bp deletion resulted in the deletion of a Proline Response Element (ProRE), and our results suggest that ProRE negatively regulates IPT5b expression in response to proline. Under salt stress, the robusta cultivar maintains high cytokinin levels as IPT5b expression cannot be inhibited by proline due to the deletion of ProRE, leading to improve salt tolerance.  相似文献   
83.
Black nightshade (Solanum nigrum, S. nigrum L.) and red nightshade ( Solanum villosum, S. villosum Mill.) are medicinal plants from the Solanaceae family that synthesize glycoalkaloids and other secondary metabolites. To recognize the potential insecticide activity of these compounds, leaf extracts (containing glycoalkaloid and methanol fractions) were tested for enzyme inhibition, antifeedant activity and toxicity. For in‐vitro glutathione S‐transferase (GST) inhibition activity, we used insecticide‐resistant Colorado potato beetle, Leptinotarsa decemlineata ( L. decemlineata; Say) midgut and fat‐body homogenate. In‐vivo toxicity and the antifeedant activity were performed using larval bioassays. The methanol extracts had greater GST inhibitory activity compared to the glycoalkaloids, as well as greater 2nd instar larvae mortality and antifeedant activity. Furthermore, the green leaf volatile compound, cis‐hex‐3‐enyl acetate, at the concentration of 5 ppm, caused 50% mortality of 2nd instar larvae. Our findings suggest the potential usefulness of S. nigrum and S. villosum extracts to control L. decemlineata.  相似文献   
84.
85.
High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic β-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat?/? mice the most sensitive to weight gain out of the three strains tested, followed by apoa1?/? mice. Nevertheless, only apoa1?/? mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic β-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1?/? and lcat?/? mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.  相似文献   
86.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   
87.
Enzyme therapy for the prevention and treatment of organophosphate poisoning depends on the availability of large amounts of cholinesterases. Transgenic plants are being evaluated for their efficiency and cost-effectiveness as a system for the bioproduction of therapeutically valuable proteins. Here we report production of a recombinant isoform of human acetylcholinesterase in transgenic tomato plants. Active and stable acetylcholinesterase, which retains the kinetic characteristics of the human enzyme, accumulated in tomato plants. High levels of specific activity were registered in leaves (up to 25 nmol min(-1) mg protein(-1)) and fruits (up to 250 nmol min(-1) mg protein(-1)).  相似文献   
88.
The influence of acetyl salicylic acid (ASA) derivatives with platelet-activating factor (PAF) lipid analogs on PAF-induced human platelet aggregation has been studied. It was found that the ASA amide with an ethanolamine plasmalogen PAF analog (1-0-alk-1"-enyl-2-acetyl-sn-glycero-3-phospho-(N-2"-acetoxybenzoyl)ethanolamine) and the ASA ester with a choline plasmalogen PAF analog (1-0-alk-1"-enyl-2-(2"-acetoxybenzoyl)-sn-glycero-3-phosphocholine) at concentrations of 10–7-10–6 M effectively inhibit PAF-induced aggregation of human platelets. In contrast to these compounds, the ASA amide with an alkyl PAF analog (1-0-alkyl-2-acetyl-sn-glycero-3-phospho-(N-2"-acetoxybenzoyl)ethanolamine) did not inhibit PAF-induced platelet aggregation. As possible mechanisms of action of the studied compounds, the blockade of PAF-receptor and cyclooxygenase inhibition are proposed.  相似文献   
89.
Dopamine has been hypothesized as a contributing factor for the selective degeneration of dopaminergic neurons in Parkinson's disease. However, the cytotoxic mechanisms of dopamine and its metabolites remain poorly understood. Using a stable aromatic amino acid decarboxylase (AADC) expressing a fibroblast cell line, we previously demonstrated a novel, non-oxidative cytotoxicity of intracellular dopamine. In this study, we further investigate the roles of dopamine metabolism and disposition proteins against intracellular dopamine cytotoxicity by co-expressing these factors in AADC-expressing cells. Our results indicate that overexpression of the vesicular monoamine transporter and monoamine oxidase A-induced protection against intracellular dopamine toxicity, and conversely that pharmacological inhibition of these pathways potentiated L-DOPA toxicity in catecholaminergic PC12 cells. Macrophage migration inhibitory factor and glutathione S-transferase (GST), factors that have recently been shown to be involved in dopamine metabolism, also exhibited a strong protective role against intracellular dopamine cytotoxicity. Our results support a potential role for non-oxidative cytoplasmic dopamine toxicity, and imply that disruption in dopamine disposition and/or metabolism could underlie the progressive degeneration of dopaminergic neurons in Parkinson's disease.  相似文献   
90.
Redox changes within neurones are increasingly being implicated as an important causative agent in brain ageing and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD). Cells have developed a number of defensive mechanisms to maintain intracellular redox homeostasis, including the glutathione (GSH) system and antioxidant enzymes. Here we examine the effects of N-acetyl-L-cysteine (NAC) on beta-amyloid (A beta) secretion and tau phosphorylation in SHSY5Y neuroblastoma cells after exposure to oxidative stress inducing/cytotoxic compounds (H(2)O(2), UV light and toxic A beta peptides). A beta and tau protein are hallmark molecules in the pathology of AD while the stress factors are implicated in the aetiology of AD. The results show that H(2)O(2), UV light, A beta 1-42 and toxic A beta 25-35, but not the inactive A beta 35-25, produce a significant induction of oxidative stress and cell cytotoxicity. The effects are reversed when cells are pre-treated with 30 mM NAC. Cells exposed to H(2)O(2), UV light and A beta 25-35, but not A beta 35-25, secrete significantly higher amounts of A beta 1-40 and A beta 1-42 into the culture medium. NAC pre-treatment increased the release of A beta 1-40 compared with controls and potentiated the release of both A beta 1-40 and A beta 1-42 in A beta 25-35-treated cells. Tau phosphorylation was markedly reduced by H(2)O(2) and UV light but increased by A beta 25-35. NAC strongly lowered phospho-tau levels in the presence or absence of stress treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号