首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1576篇
  免费   89篇
  国内免费   39篇
  2023年   11篇
  2022年   25篇
  2021年   19篇
  2020年   25篇
  2019年   45篇
  2018年   64篇
  2017年   38篇
  2016年   24篇
  2015年   31篇
  2014年   77篇
  2013年   99篇
  2012年   67篇
  2011年   110篇
  2010年   74篇
  2009年   84篇
  2008年   81篇
  2007年   98篇
  2006年   70篇
  2005年   54篇
  2004年   35篇
  2003年   47篇
  2002年   30篇
  2001年   21篇
  2000年   24篇
  1999年   30篇
  1998年   22篇
  1997年   17篇
  1996年   18篇
  1995年   18篇
  1994年   33篇
  1993年   20篇
  1992年   15篇
  1991年   13篇
  1990年   13篇
  1989年   10篇
  1988年   21篇
  1987年   13篇
  1986年   10篇
  1985年   32篇
  1984年   27篇
  1983年   21篇
  1982年   16篇
  1981年   14篇
  1980年   13篇
  1979年   14篇
  1978年   21篇
  1977年   9篇
  1976年   8篇
  1974年   10篇
  1973年   6篇
排序方式: 共有1704条查询结果,搜索用时 15 毫秒
101.
Pneumocystis, an AIDS-associated opportunistic pathogen of the lung has some unusual features. This article focuses on work done by my group to understand the organism's distinct sterols. Although Pneumocystis is closely related to fungi, it lacks the major fungal sterol, ergosterol. Several delta(7) 24-alkysterols synthesized by P. carinii are the same as those reported in some basidiomycete rust fungi. The 24-alkylsterols are synthesized by the action of S-adenosyl-L-methionine:C-24 sterol methyl transferase (SAM:SMT). Fungal SAM:SMT enzymes normally transfer only one methyl group to the C-24 position of the sterol side chain and the cells accumulate C28 24-alkylsterols. In contrast, the P. carinii SAM:SMT and those of some plants catalyze one or two methyl transfer reactions producing both C28 and C29 24-alkylsterols. However, unlike most fungi, plants, and the kinetoplastid flagellates Leishmania and Trypanosoma cruzi, P. carinii does not appear to form double bonds at C-5 of the sterol nucleus and C-22 of the sterol side chain. Furthermore, the P. carinii SAM:SMT substrate preference for C30 lanosterol differs from that of homologous enzymes in any other organisms studied. C31 24-Methylenelanosterol and C32 pneumocysterol, products of SAM:SMT activity on lanosterol, can accumulate in high amounts in some, but not all, human-derived Pneumocystis jiroveci populations.  相似文献   
102.
The ATF1-encoded Saccharomyces cerevisiae yeast alcohol acetyl transferase I is responsible for the formation of several different volatile acetate esters during fermentations. A number of these volatile esters, e.g. ethyl acetate and isoamyl acetate, are amongst the most important aroma compounds in fermented beverages such as beer and wine. Manipulation of the expression levels of ATF1 in brewing yeast strains has a significant effect on the ester profile of beer. Northern blot analysis of ATF1 and its closely related homologue, Lg-ATF1, showed that these genes were rapidly induced by the addition of glucose to anaerobically grown carbon-starved cells. This induction was abolished in a protein kinase A (PKA)-attenuated strain, while a PKA-overactive strain showed stronger ATF1 expression, indicating that the Ras/cAMP/PKA signalling pathway is involved in this glucose induction. Furthermore, nitrogen was needed in the growth medium in order to maintain ATF1 expression. Long-term activation of ATF1 could also be obtained by the addition of the non-metabolisable amino acid homologue beta-L-alanine, showing that the effect of the nitrogen source did not depend on its metabolism. In addition to nutrient regulation, ATF1 and Lg-ATF1 expression levels were also affected by heat and ethanol stress. These findings help in the understanding of the effect of medium composition on volatile ester synthesis in industrial fermentations. In addition, the complex regulation provides new insights into the physiological role of Atf1p in yeast.  相似文献   
103.
The pilus of pathogenic Neisseria is a polymer composed mainly of the glycoprotein, pilin. Recent investigations significantly enhanced characterization of pilin glycan (Pg) from N. gonorrhoeae (gonococcus, GC) and N. meningitidis (meningococcus, MC). Several pilin glycosylation genes were discovered recently from these bacteria and some of these genes transfer sugars previously unknown to be present in neisserial pili. Due to these findings, glycans of GC and MC pilin are now considered more complex. Furthermore, various Pg can be expressed by different strains and variants of GC, as well as MC. Intra-species variation of Pg between different groups of GC or MC can partly be due to polymorphisms of glycosylation genes. In pilus of pathogenic Neisseria, alternative glycoforms are also produced due to phase-variation (Pv) of pilin glycosylation genes. Most remarkably, the pgtA (pilin glycosyl transferase A) gene of GC can either posses or lack the ability of Pv. Many GC strains carry the phase-variable (Pv+) pgtA, whereas others carry the allele lacking Pv (Pv–). Mostly, the GC isolates from disseminated gonococcal infection (DGI) carry Pv+ pgtA but organisms from uncomplicated gonorrhea (UG) contain the Pv– allele. This data suggests that Pv of pgtA facilitates DGI, whereas constitutive expression of the Pv– pgtA may promote UG. Additional implications of Pg in various physiological and pathogenic mechanisms of Neisseria can also be envisaged based on various recent data.  相似文献   
104.
A 3.0-kb region involved in lipopolysaccharide biosynthesis in Bradyrhizobium japonicum was sequenced. One complete open reading frame was identified which encodes a polypeptide of 354 amino acid residues with a predicted molecular mass of 38 209 Da. Expression of the protein using a T7 gene expression system revealed a band of similar molecular mass after sodium dodecyl sulfate polyacrylamide gel electrophoresis. A database search against known gene sequences revealed a significant sequence similarity to the rfaF gene cloned from several Gram-negative bacteria. The rfaF gene is known to encode heptosyltransferase II that transfers a second heptose to the inner core of lipopolysaccharide. The cloned B. japonicum open reading frame was able to functionally complement a rfaF mutant of Salmonella typhimurium SL3789. Transformation of this mutant with the B. japonicum gene restored production of an intact lipopolysaccharide and resistance to the hydrophobic antibiotic, novobiocin. An additional open reading frame having a significant sequence similarity to the rfaD gene was found to be divergently oriented to the rfaF gene.  相似文献   
105.
The glutathione transferases (GSTs) from maize (Zea mays L.) with activities toward the chloroacetanilide herbicide metolachlor and the diphenyl ether herbicide fluorodifen were fractionated into two pools based on binding to affinity columns. Pool 1 GSTs were retained on Orange A agarose and were identified as isoenzymes Zea mays (Zm) GST I-I, Zm GST I-II and Zm GST I-III, which have been described previously. Pool 2 GSTs selectively bound to S-hexyl-glutathione-Sepharose and were distinct from the pool 1 GSTs, being composed of a homodimer of 28.5 kDa subunits, termed Zm GST V-V, and a heterodimer of the 28.5 kDa polypeptide and a 27.5 kDa subunit, termed Zm GST V-VI. Using an antibody raised to Zm GST V-VI, a cDNA expression library was screened and a Zm GST V clone identified showing sequence similarity to the type-III auxin-inducible GSTs previously identified in tobacco and other dicotyledenous species. Recombinant Zm GST V-V showed high GST activity towards the diphenyl ether herbicide fluorodifen, detoxified toxic alkenal derivatives and reduced organic hydroperoxides. Antibodies raised to Zm GST I-II and Zm GST V-VI were used to monitor the expression of GST subunits in maize seedlings. Over a 24 h period the Zm GST I subunit was unresponsive to chemical treatment, while expression of Zm GST II was enhanced by auxins, herbicides, the herbicide safener dichlormid and glutathione. The Zm GST V subunit was more selective in its induction, only accumulating significantly in response to dichlormid treatment. During development Zm GST I and Zm GST V were expressed more in roots than in shoots, with Zm GST II expression limited to the roots.  相似文献   
106.
107.
Auxin is a plant growth regulator involved in diverse fundamental developmental responses. Much is now known about auxin transport, via influx and efflux carriers, and about auxin perception and its role in gene regulation. Many developmental processes are dependent on peaks of auxin concentration and, to date, attention has been directed at the role of polar auxin transport in generating and maintaining auxin gradients. However, surprisingly little attention has focussed on the role and significance of auxin biosynthesis, which should be expected to contribute to active auxin pools. Recent reports on the function of the YUCCA flavin monooxygenases and a tryptophan aminotransferase in Arabidopsis have caused us to look again at the importance of local biosynthesis in developmental processes. Many alternative and redundant pathways of auxin synthesis exist in many plants and it is emerging that they may function in response to environmental cues.  相似文献   
108.
Incubation of rat splenic microsomes with the catalytic subunit of cyclic AMP-dependent protein kinase in the presence of Mg-ATP stimulated 2-3-fold lyso-platelet-activating factor:acetyltransferase activity. This activation was due to an increase in the Vmax of the acetylation reaction, whereas the Km for acetyl-CoA was not affected. The ATP derivative, AMPPNP, could not replace ATP and preincubation of the microsomes with the heat-stable inhibitor of protein kinase prevented the activation by Mg-ATP obtained in the presence of the protein kinase. Activation of the acetylation reaction by the protein kinase was reversible. Evidence is provided that the reversal of activation is due to dephosphorylation of the enzyme. These data provide evidence that in vitro lyso-platelet-activating factor:acetyltransferase from splenic microsomes is regulated by phosphorylation.  相似文献   
109.
Insect glutathione S‐transferases (GSTs) play important roles in detoxifying toxic compounds and eliminating oxidative stress caused by these compounds. In this study, detoxification activity of the epsilon GST SlGSTE1 in Spodoptera litura was analyzed for several insecticides and heavy metals. SlGSTE1 was significantly up‐regulated by chlorpyrifos and xanthotoxin in the midgut of S. litura. The recombinant SlGSTE1 had Vmax (reaction rate of the enzyme saturated with the substrate) and Km (michaelis constant and equals to the substrate concentration at half of the maximum reaction rate of the enzyme) values of 27.95 ± 0.88 μmol/min/mg and 0.87 ± 0.028 mmol/L for glutathione, respectively, and Vmax and Km values of 22.96 ± 0.78 μmol/min/mg and 0.83 ± 0.106 mmol/L for 1‐chloro‐2,4‐dinitrobenzene, respectively. In vitro enzyme indirect activity assay showed that the recombinant SlGSTE1 possessed high binding activities to the insecticides chlorpyrifos, deltamethrin, malathion, phoxim and dichloro‐diphenyl‐trichloroethane (DDT). SlGSTE1 showed higher binding activity to toxic heavy metals cadmium, chromium and lead than copper and zinc that are required for insect normal growth. Western blot analysis showed that SlGSTE1 was induced in the gut of larvae fed with chlorpyrifos or cadmium. SlGSTE1 also showed high peroxidase activity. All the results together indicate that SlGSTE1 may play an important role in the gut of S. litura to protect the insect from the toxic effects of these compounds and heavy metals.  相似文献   
110.
N‐Acetyl‐L‐cysteine (NAC) can inhibit the luminol–H2O2, reaction, which is catalyzed by silver nanoparticles. Based on this phenomenon a new method was developed for NAC determination. Under optimum conditions, a linear relationship between chemiluminescence intensity and NAC concentration was found in the range 0.034–0.98 µg/mL. The detection limit was 0.010 µg/mL (S/N =3), and the relative standard deviation (RSD) was <5% for 0.480 µg/mL NAC (n =5). This simple, sensitive and inexpensive method has been applied to measure the concentration of NAC in pharmaceutical tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号