首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   724篇
  免费   39篇
  国内免费   37篇
  2023年   7篇
  2022年   8篇
  2021年   6篇
  2020年   14篇
  2019年   22篇
  2018年   25篇
  2017年   18篇
  2016年   22篇
  2015年   24篇
  2014年   36篇
  2013年   74篇
  2012年   19篇
  2011年   38篇
  2010年   31篇
  2009年   39篇
  2008年   45篇
  2007年   31篇
  2006年   28篇
  2005年   27篇
  2004年   23篇
  2003年   17篇
  2002年   17篇
  2001年   19篇
  2000年   10篇
  1999年   8篇
  1998年   10篇
  1997年   11篇
  1996年   7篇
  1995年   9篇
  1994年   10篇
  1993年   6篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   8篇
  1986年   7篇
  1985年   9篇
  1984年   22篇
  1983年   4篇
  1982年   12篇
  1981年   10篇
  1980年   12篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
排序方式: 共有800条查询结果,搜索用时 31 毫秒
91.
AIM: To produce high laccase activities from the white-rot fungus Trametes hirsuta in an in-house air-lift bioreactor (ALB). METHODS AND RESULTS: Trametes hirsuta was grown in a 6-l ALB. A fed-batch strategy with glycerol as an addition resulted in maximum laccase activity of 19,400 U l(-1), which was the highest reported from the fungus. CONCLUSION: The ALB configuration with additional glycerol resulted in high laccase activities. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides useful information on how to produce high concentrations of laccase.  相似文献   
92.
Living cells oscillate between the two states of quiescence and division that stand poles apart in terms of energy requirements, macromolecular composition and structural organization and in which they fulfill dichotomous activities. Division is a highly dynamic and energy-consuming process that needs be carefully orchestrated to ensure the faithful transmission of the mother genotype to daughter cells. Quiescence is a low-energy state in which a cell may still have to struggle hard to maintain its homeostasis in the face of adversity while waiting sometimes for long periods before finding a propitious niche to reproduce. Thus, the perpetuation of single cells rests upon their ability to elaborate robust quiescent and dividing states. This led yeast and mammalian cells to evolve rigorous Start [L.H. Hartwell, J. Culotti, J. Pringle, B.J. Reid, Genetic control of the cell division cycle in yeast, Science 183 (1974) 46–51] and restriction (R) points [A.B. Pardee, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U. S. A. 71 (1974) 1286–1290], respectively, that reduce deadly interferences between the two states by enforcing their temporal insulation though still enabling a rapid transition from one to the other upon an unpredictable change in their environment. The constitutive cells of multicelled organisms are extremely sensitive in addition to the nature of their adhering support that fluctuates depending on developmental stage and tissue specificity. Metazoan evolution has entailed, therefore, the need for exceedingly flexible anchorage-dependent R points empowered to assist cells in switching between quiescence and division at various times, places and conditions in the same organism. Programmed cell death may have evolved concurrently in specific contexts unfit for the operation of a stringent R point that increase the risk of deadly interferences between the two states (as it happens notably during development). But, because of their innate flexibility, anchorage-dependent R points have also the ability to readily adjust to a changing structural context so as to give mutated cells a chance to reproduce, thereby encouraging tumor genesis. The Rb and p53 proteins, which are regulated by the two products of the Ink4a-Arf locus [C.J. Sherr, The INK4a/ARF network in tumor suppression, Nat. Rev., Mol. Cell Biol. 2 (2001) 731–737], govern separable though interconnected pathways that cooperate to restrain cyclin D- and cyclin E-dependent kinases from precipitating untimely R point transit. The expression levels of the Ink4a and Arf proteins are especially sensitive to changes in cellular shape and adhesion that entirely remodel at the time when cells shift between quiescence and division. The Arf proteins further display an extremely high translational sensitivity and can activate the p53 pathway to delay R point transit, but, only when released from the nucleolus, ‘an organelle formed by the act of building a ribosome’ [T. Mélèse, Z. Xue, The nucleolus: an organelle formed by the act of building a ribosome, Curr. Opin. Cell Biol. 7 (1995) 319–324]. In this way, the Ink4a/Rb and Arf/p53 pathways emerge as key regulators of anchorage-dependent R point transit in mammalian cells and their deregulation is, indeed, a rule in human cancers. Thus, by selecting the nucleolus to mitigate cell cycle control by the Arf proteins, mammalian cells succeeded in forging a highly flexible R point enabling them to match cell division with a growth rate imposed by factors controlling nucleolar assembling, such as nutrients and adhesion. It is noteworthy that nutrient control of critical size at Start in budding yeast has been shown recently to be governed by a nucleolar protein interaction network [P. Jorgensen, J.L. Nishikawa, B.-J. Breitkreutz, M. Tyers, Systematic identification of pathways that couple cell growth and division in yeast, Science 297 (2002) 395–400].  相似文献   
93.
The worldwide surplus of glycerol generated as inevitable byproduct of biodiesel fuel and oleochemical production is resulting in the shutdown of traditional glycerol-producing/refining plants and new applications are needed for this now abundant carbon source. In this article we report our finding that Escherichia coli can ferment glycerol in a pH-dependent manner. We hypothesize that glycerol fermentation is linked to the availability of CO(2), which under acidic conditions is produced by the oxidation of formate by the enzyme formate hydrogen lyase (FHL). In agreement with this hypothesis, glycerol fermentation was severely impaired by blocking the activity of FHL. We demonstrated that, unlike CO(2), hydrogen (the other product of FHL-mediated formate oxidation) had a negative impact on cell growth and glycerol fermentation. In addition, supplementation of the medium with CO(2) partially restored the ability of an FHL-deficient strain to ferment glycerol. High pH resulted in low CO(2) generation (low activity of FHL) and availability (most CO(2) is converted to bicarbonate), and consequently very inefficient fermentation of glycerol. Most of the fermented glycerol was recovered in the reduced compounds ethanol and succinate (93% of the product mixture), which reflects the highly reduced state of glycerol and confirms the fermentative nature of this process. Since glycerol is a cheap, abundant, and highly reduced carbon source, our findings should enable the development of an E. coli-based platform for the anaerobic production of reduced chemicals from glycerol at yields higher than those obtained from common sugars, such as glucose.  相似文献   
94.
Aquaporins are channels that allow the movement of water across the cell membrane. Some members of the aquaporin family, the aquaglyceroporins, also allow the transport of glycerol, which is involved in the biosynthesis of triglycerides and the maintenance of fasting glucose levels. Aquaporin-7 (AQP7) is a glycerol channel mainly expressed in adipocytes. The deletion of AQP7 gene in mice leads to obesity and type 2 diabetes. AQP7 modulates adipocyte glycerol permeability thereby controlling triglyceride accumulation and fat cell size. Furthermore, the coordinated regulation of fat-specific AQP7 and liver-specific AQP9 may be key to determine glucose metabolism in insulin resistance.  相似文献   
95.
Cell adhesion is required for many cellular processes. In fungi, cell-cell contact during mating, flocculation or virulence is mediated by adhesins, which typically are glycosyl phosphatidyl inositol (GPI)-modified cell wall glycoproteins. Proteins with internal repeats (PIR) are surface proteins involved in the response to stress. In Schizosaccharomyces pombe no adhesins or PIR proteins have been described. Here we study the S. pombe Map4p, which defines a new class of surface protein that is not GPI-modified and has a serine/threonine rich domain and internal repeats that differ from those present in PIR proteins. Map4p is a mating type-specific adhesin required for mating in h(+) cells and enhances cell adhesion when overexpressed.  相似文献   
96.
Availability, low price, and high degree of reduction have made glycerol a highly attractive and exploited carbon source for the production of fuels and reduced chemicals. Here we report the quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli through the use of kinetic modeling and metabolic control analysis (MCA) to gain a better understanding of glycerol fermentation and identify key targets for genetic manipulation that could enhance product synthesis. The kinetics of glycerol fermentation in a batch culture was simulated using a dynamic model consisting of mass balances for glycerol, ethanol, biomass, and 11 intracellular metabolites, along with the corresponding kinetic expressions for the metabolism of each species. The model was then used to calculate metabolic control coefficients and elucidate the control structure of the pathways involved in glycerol utilization and ethanol synthesis. The calculated flux control coefficients indicate that the glycolytic flux during glycerol fermentation is almost exclusively controlled by the enzymes glycerol dehydrogenase (encoded by gldA) and dihydroxyacetone kinase (DHAK) (encoded by dhaKLM). In agreement with the MCA findings, overexpression of gldA and dhaKLM led to significant increase in glycerol utilization and ethanol synthesis fluxes. Moreover, overexpression of other enzymes involved in the pathways that mediate glycerol utilization and its conversion to ethanol had no significant impact on glycerol utilization and ethanol synthesis, further validating the MCA predictions. These findings were then applied as a means of increasing the production of ethanol: overexpression of glycerol dehyrdogenase and DHAK enabled the production of 20 g/L ethanol from crude glycerol, a by-product of biodiesel production, indicating the potential for industrial scale conversion of waste glycerol to ethanol under anaerobic conditions.  相似文献   
97.
Ectopic fat accumulation has been linked to lipotoxic events, including the development of insulin resistance in skeletal muscle. Indeed, intramyocellular lipid storage is strongly associated with the development of type 2 diabetes. Research during the last two decades has provided evidence for a role of lipid intermediates like diacylglycerol and ceramide in the induction of lipid-induced insulin resistance. However, recently novel data has been gathered that suggest that the relation between lipid intermediates and insulin resistance is less straightforward than has been previously suggested, and that there are several routes towards lipid-induced insulin resistance. For example, research in this field has shifted towards imbalances in lipid metabolism and lipid droplet dynamics. Next to imbalances in key lipogenic and lipolytic proteins, lipid droplet coat proteins appear to be essential for proper intramyocellular lipid storage, turnover and protection against lipid-induced insulin resistance.Here, we discuss the current knowledge on lipid-induced insulin resistance in skeletal muscle with a focus on the evidence from human studies. Furthermore, we discuss the available data that provides supporting mechanistic information.  相似文献   
98.
99.
Babesia divergens is the Apicomplexa agent of the bovine babesiosis in Europe: this infection leads to growth and lactation decrease, so that economical losses due to this parasite are sufficient to require the development of a vaccine. The major surface antigen of B. divergens has been described as a 37 kDa protein glycosyl phosphatidyl inositol (GPI)-anchored at the surface of the merozoite. The immuno-prophylactic potential of Bd37 has been demonstrated, and we present here the high-resolution solution structure of the 27 kDa structured core of Bd37 (Δ-Bd37) using NMR spectroscopy. A model for the whole protein has been obtained using additional small angle X-ray scattering (SAXS) data. The knowledge of the 3D structure of Bd37 allowed the precise epitope mapping of antibodies on its surface. Interestingly, the geometry of Δ-Bd37 reveals an intriguing similarity with the exocyst subunit Exo84p C-terminal region, an eukaryotic protein that has a direct implication in vesicle trafficking. This strongly suggests that Apicomplexa have developed in parallel molecular machines similar in structure and function to the ones used for endo- and exocytosis in eukaryotic cells.  相似文献   
100.
以克雷伯氏菌基因组DNA为模板,扩增得到编码甘油脱氢酶(GDH)的基因dhaD,将其克隆到大肠杆菌表达载体pET-28a(+)上,在E.coliBL21(DE3)中诱导表达,利用表达载体pET-28a(+)上的6·His-Tag标记选用Ni柱亲和层析法纯化表达具有活性的甘油脱氢酶(GDH),纯化后比酶活达到156U/mg,纯化倍数达4.6倍,回收率为67.4%。并初步研究了该酶的酶学性质,酶反应的最适pH为11.0,在pH7.0~12.0范围内稳定;酶反应的最适温度为30℃,稳定范围为25~45℃; 酶动力学参数以甘油为底物的Km为0.54 mmol/L, Vmax为0.49 μmol/(mL·min)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号