首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6409篇
  免费   321篇
  国内免费   188篇
  2023年   79篇
  2022年   81篇
  2021年   148篇
  2020年   110篇
  2019年   167篇
  2018年   182篇
  2017年   124篇
  2016年   113篇
  2015年   124篇
  2014年   311篇
  2013年   357篇
  2012年   217篇
  2011年   292篇
  2010年   206篇
  2009年   233篇
  2008年   289篇
  2007年   291篇
  2006年   246篇
  2005年   262篇
  2004年   190篇
  2003年   199篇
  2002年   177篇
  2001年   146篇
  2000年   114篇
  1999年   129篇
  1998年   129篇
  1997年   121篇
  1996年   111篇
  1995年   103篇
  1994年   89篇
  1993年   125篇
  1992年   101篇
  1991年   93篇
  1990年   96篇
  1989年   72篇
  1988年   87篇
  1987年   86篇
  1986年   50篇
  1985年   79篇
  1984年   125篇
  1983年   92篇
  1982年   108篇
  1981年   88篇
  1980年   82篇
  1979年   79篇
  1978年   37篇
  1977年   49篇
  1976年   35篇
  1975年   30篇
  1974年   26篇
排序方式: 共有6918条查询结果,搜索用时 125 毫秒
121.
To examine whether zinc deficiency would increase the toxicity of dietary aluminum, weanling, male Sprague-Dawley rats were fed purified diets containing either 2 or 30 mg Zn/kg diet, with or without 500 mg Al/kg diet for 28 d. Individually pair-fed rats were fed the 30 mg Zn/kg diet with or without added aluminum to control for inanition secondary to zinc deficiency. Rats fed the 2 μg Zn/kg diet showed evidence of zinc deficiency, including anorexia, growth retardation, and depressed concentrations of zinc in tibias and livers. Zinc deficiency did not significantly increase the concentrations of aluminum in the tibias, livers, kidneys, or regions of the brain examined (cerebrum, cerebellum, midbrain, and hippocampus). Inclusion of aluminum in the diet did not alter aluminum concentrations in the various tissues. Under the conditions of this study, zinc deficiency did not result in greater sensitivity to dietary aluminum exposure.  相似文献   
122.
123.
To clarify the mechanism of aluminum (Al) toxicity and Al tolerance, we isolated a new clone (pAL201) from a tobacco cDNA library. Northern blot hybridization analysis indicated that the expression of pAL201 is induced by Al treatment and phosphate (P1) starvation. The complete cDNA sequence suggested that this clone encodes a moderately anionic peroxidase (EC 1.11.1.7). Analysis by isoelectric focussing indicated that a moderately anionic peroxidase (approximately pI 6.7) and two cationic peroxidases (pI 9.2 and 9.7) in the soluble fraction are activated by Al treatment and P1 starvation, while two moderately anionic isozymes are repressed by these stresses. We suppose that Al ion stress can control the activity of some peroxidase isozymes, one of which is probably induced by enhanced gene expression of pAL201. There is a possibility that some of these isozymes have some functions in Al ion stress.  相似文献   
124.
Total, organic and extractable P were measured in the humus and underlying soil to 10 cm depth beneath Sitka spruce (SS) and mixed Sitka spruce and Scots pine (SS+SP) stands planted on upland heath. The humus beneath SS+SP contained significantly (p<0.01) greater amounts of total and organic-P than that in SS and the mixed stands had more effectively retained approximately 87 per cent of previously applied fertilizer-P, totalling 100 kg P ha–1, compared with 70 per cent in SS. Despite the larger amounts of total-P in the mixed plots 0.01 M CaCl2 extractable molybdate reactive phosphorus (MRP) was significantly (p<0.05) greater in SS+SP humus only during March and April. Greater concentrations of MRP were released from the humus and soil during July and August at a mean rate of 58 g P ha–1 day–1. This coincided with drying of the soil during the summer and the rate of release, attributed to death of fine roots and microorganisms, was 4 to 30 times greater than reported values for rates of net mineralization of P from forest soils.  相似文献   
125.
Summary Sunflowers are known to respond to Fe deficiency (-Fe) with a typical root tip swelling and the formation of root hairs and transfer cells in the rhizodermis. The possible regulation of this process was examined by a comparative study of root morphology and cytology of intact seedlings (Helianthus annuus L. cv. Giganteus) under -Fe and hormonal treatment in nutrient solution. Longitudinal sections of -Fe roots showed root tip swelling is due to cessation of cell elongation and isodiarnetric volume increase of the cortical cells. Enhanced cell division in the pericycle leads to the formation of lateral root primordia in the swollen zone. Xylem vessel differentiation is markedly accelerated and accompanied by early differentiation of the casparian band in the endodermis. Exogenous application of IAA (10–8-10–7 M) via the nutrient solution to Fe sufficient plants causes symptoms which closely mimick the characteristics of Fe deficiency including root hair development. Moreover, rhizodermal cells produce peripheral protuberances reminiscent of -Fe transfer cells. Ethylene-releasing ethephon (10–4M) also causes subapical swelling and root hair formation. However, wall protuberance development is less pronounced. ABA (10–5 M) leads to similar root thickening and root hair formation but without any comparable transfer cell differentiation. From the striking similarities between -Fe and IAA treatment it is concluded that this hormone (possibly in cooperation with ethylene) is involved in the Fe stress response of sunflower roots. The importance of a continuous polar IAA transport for this process is discussed.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - Ethephone 2-chloro-ethylphosphonic acid - Fe(III)-EDTA ethylenediaminetetraacetic ferric-sodium salt - IAA indole-acetic acid - TIBA triiodobenzoic acid  相似文献   
126.
Phosphatidylinositol-specific phospholipase C (PLC) is a family of enzymes that occupy a pivotal role in one of the largest classes of cellular signaling pathways known. Mammalian PLC enzymes have been divided into four major classes and a variety of subclasses based on their structural characteristics and immunological differences. There have been five invertebrate PLC-encoding genes cloned thus far and these fall within three of the four major classes used in categorizing mammalian PLC. Four of these invertebrate genes have been cloned fromDrosophila melanogaster and one is fromArtemia, a brine shrimp. Structural characteristics of the invertebrate enzymes include the presence of highly conserved Box X and Box Y domains found in major types of mammalian PLC as well as novel features. Two of the invertebrate PLC genes encode multiple splice-variant subtypes which is a newly emerging level of diversity observed in mammalian enzymes. Studies of the invertebrate PLCs have contributed to the identification of the physiological functions of individual isozymes. These identified roles include cellular processes such as phototransduction, olfaction, cell growth and differentiation.  相似文献   
127.
To investigate the splitting of the inorganic phosphate (Pi) peak during exercise and recovery, a time-resolved 31phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) technique was used. Seven healthy young sedentary male subjects performed knee flexion exercise in the prone position inside a 2.1-T magnet, with the surface coil for 31P-MRS being placed on the biceps femoris muscle. After a 1-min warm-up without loading, the exercise intensity was increased by 0.41 W at 15-s intervals until exhaustion, followed by a 5-min recovery period. The 31P-MRS were recorded every 5 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of the Pi and phosphocreatine peaks were performed. Five of the seven subjects showed two distinct Pi peaks during exercise, suggesting two different pH distributions in exercising muscle (high pH and low pH region). In these five subjects, the high-pH increased rapidly just after the onset of exercise, while the low-pH peak increased gradually approximately 60 s after the onset of exercise. During recovery, the disappearance of the high-pH peak was more rapid than that of the low-pH peak. These findings suggest that our method 31P-MRS provides a simple approach for studying the kinetics of the Pi peak and intramuscular pH during exercise and recovery.  相似文献   
128.
Portielje  R.  Lijklema  L. 《Hydrobiologia》1994,275(1):349-358
The uptake of phosphate by benthic communities, dominated by living algae, previously exposed to different levels of external nutrient loading, exhibited first-order kinetics with respect to the intracellular P-deficit. This deficit is the difference between the maximum and the actual intracellular P-concentration.The maximum storage capacity of P per unit of dry weight was positively correlated to the level of external nutrient loading, whereas the phosphate uptake rate constant was negatively correlated.The observed internal P concentrations in the benthic layer of test ditches over a period of two and a half years, indicated a slight decrease towards a minimum value in a ditch with a low external P-input. In a medium loaded ditch the internal P-concentration did not change significantly. In a high loaded ditch increasing internal P-concentrations over time were observed, towards P-saturation of the benthic community.  相似文献   
129.
Abstract: The excitatory amino acid analogues l -glutamate ( l -Glu), l -aspartate ( l -Asp), d -Asp, and trans -(±)-1-amino-1,3-cyclopentanedicarboxylate ( trans -ACPD) stimulate the hydrolysis of phosphoinositides (PI). In the present studies, the effects of noncompetitive and competitive inhibitors on PI hydrolysis stimulated by excitatory amino acid analogues were examined. When agonist and inhibitor were added simultaneously to hippocampal tissue, the noncompetitive inhibitor l -2-amino-3-phosphonopropionate ( l -AP3) did not block the effects of l -Glu, l -Asp, or d -Asp at concentrations that block the effects of trans -ACPD by more than 80%. When tissue was pre-incubated with l -AP3, the effects of l -Glu, l -Asp, or d -Asp were blocked (IC50 values between 65 and 210 µ M ). Unlike l -AP3, l -aspartate-β-hydroxamate ( l -AβHA) inhibited PI hydrolysis stimulated by trans -ACPD, l -Glu, l -Asp, or d -Asp when agonist and inhibitor were added simultaneously in hippocampus; its effects were not time-dependent. In cerebellum, both l -AP3 and l -AβHA had agonist activity. Inhibition by the recently identified competitive inhibitor (+)-α-methyl-4-carboxyphenylglycine [(+)-MCPG] of PI hydrolysis was also examined. (+)-MCPG blocked PI hydrolysis stimulated by trans -ACPD, l -Asp, or d -Asp in both hippocampus and cerebellum (IC50 values between 220 and 1,700 µ M ). The effects of (+)-MCPG were consistent with a competitive mechanism of action. (+)-MCPG (up to 3 m M ) blocked PI hydrolysis stimulated by l -Glu by less than 25% in both hippocampus and cerebellum.  相似文献   
130.
Abstract: We examined the effects of cyclic AMP on dopamine receptor-coupled activation of phosphoinositide hydrolysis in rat striatal slices. Forskolin, dibutyryl cyclic AMP, and the protein kinase A activator Sp -cyclic adenosine monophosphothioate ( Sp -cAMPS) significantly inhibited inositol phosphate formation stimulated by the dopamine D1 receptor agonist SKF 38393. Conversely, the protein kinase A antagonist Rp -cyclic adenosine monophosphothioate ( Rp -cAMPS) dose-dependently potentiated the SKF 38393 effect. In the presence of 200 µ M Rp -cAMPS, the dose-response curves of the dopamine D1 receptor agonists SKF 38393 and fenoldopam were shifted to the left and maximal agonist responses were markedly increased. The agonist EC50 values, however, were not significantly altered by protein kinase A inhibition. Neither Sp -cAMPS nor Rp -cAMPS significantly affected basal inositol phosphate accumulation. These findings demonstrate that dopaminergic stimulation of phosphoinositide hydrolysis is inhibited by elevations in intracellular cyclic AMP. Dopamine receptor agonists that stimulate adenylyl cyclase could suppress their activation of phosphoinositide hydrolysis by concomitantly stimulating the formation of cyclic AMP in striatal tissue. The interaction between dopamine D1 receptor-stimulated elevations in cyclic AMP and dopaminergic stimulation of inositol phosphate formation suggests a cellular colocalization of these dopamine-coupled transduction pathways in at least some cells of the rat striatum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号