首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6409篇
  免费   321篇
  国内免费   188篇
  2023年   79篇
  2022年   81篇
  2021年   148篇
  2020年   110篇
  2019年   167篇
  2018年   182篇
  2017年   124篇
  2016年   113篇
  2015年   124篇
  2014年   311篇
  2013年   357篇
  2012年   217篇
  2011年   292篇
  2010年   206篇
  2009年   233篇
  2008年   289篇
  2007年   291篇
  2006年   246篇
  2005年   262篇
  2004年   190篇
  2003年   199篇
  2002年   177篇
  2001年   146篇
  2000年   114篇
  1999年   129篇
  1998年   129篇
  1997年   121篇
  1996年   111篇
  1995年   103篇
  1994年   89篇
  1993年   125篇
  1992年   101篇
  1991年   93篇
  1990年   96篇
  1989年   72篇
  1988年   87篇
  1987年   86篇
  1986年   50篇
  1985年   79篇
  1984年   125篇
  1983年   92篇
  1982年   108篇
  1981年   88篇
  1980年   82篇
  1979年   79篇
  1978年   37篇
  1977年   49篇
  1976年   35篇
  1975年   30篇
  1974年   26篇
排序方式: 共有6918条查询结果,搜索用时 15 毫秒
111.
A series of amphiphilic polymethylenecarboxymaleimides has been synthesized for use as sulfhydryl reagents applicable to membrane proteins. Physical properties of the compounds which are relevant to their proposed mode of action have been determined. By comparing rates of reaction in aqueous and aprotic solvents, the compounds have been shown to react exclusively with the thiolate ion. The effects of the reagents on three membrane-associated proteins are reported, and in two cases a comparative study has been made of the effects on the proteins in the absence of membranes. A mechanism is proposed whereby the reagents are anchored at the lipid/water interface by the negatively charged carboxyl group, thus siting the reactive maleimide in a plane whose depth is defined by the length of the reagent. Supporting evidence for this model is provided by the inability of the reagents to traverse membranes, and variation of their inhibitory potency with chain length when the proteins are embedded in the membrane, but not when extracted into solution. As examples of general use of the reagents to probe sulfhydryl groups in membrane proteins, the reagents have been used to (a) determine the depths in the membrane at which two populations of sulfhydryl groups occur in the mitochondrial phosphate transporter; (b) locate a single sulfhydryl associated with the active site ofD--hydroxybutyrate dehydrogenase in the inner mitochondrial membrane; (c) examine sulfhydryl groups in theD-3-glyceraldehyde phosphate dehydrogenase associated with the human red blood cell membrane.  相似文献   
112.
Bacterial anion exchange now includes both carboxylate-linked reactions, in which there is an antiport of mono- and dicarboxylic acids, and Pi-linked reactions that build on phosphate (Pi) and organic phosphates. To illustrate the general features of this expanding class, this article discussed the biochemistry, physiology, and molecular biology of Pi-linked antiporters that accept glucose 6-phosphate (G6P) as their primary substrate. Kinetic and biochemical analysis suggsts that Pi-linked exchangers have a bifunctional active site that accepts a pair of negative charges. For this reason, exchange stoichiometry moves between the limits of 2:1 and 2:2 to reflect the ratio of mono- and divalent substrates at either membrane surface. This results in a particularly interesting reaction sequencein vivo, where, because cytosolic pH is relatively alkaline, one can expect the asymmetric exchange of two monovalent G6P anions against a single divalent G6P. In this way, an otherwise futile self-exchange of G6P gives a net flux driven (indirectly) by the pH gradient. Despite this biochemical and physiological complexity, Pi-linked carriers resemble all other secondary carriers at a molecular level. Indeed, sequence analysis leads one to infer a common (albeit low resolution) structural theme in which each functional unit has two sets of six trans-membrane helices separated by a central hydrophilic loop. Present examples show that this topology can derive from either a single protein, as is typical in bacteria, or from pairs of identical subunits, as found in mitochondria and chloroplasts. The finding of this common structure should make it possible to build detailed structural models that have implications for all membrane carrier proteins.  相似文献   
113.
Iron-dependent formation of ferredoxin and flavodoxin was determined in Anabaena ATCC 29413 and ATCC 29211 by a FPLC procedure. In the first species ferredoxin is replaced by flavodoxin at low iron levels in the vegetative cells only. In the heterocysts from Anabaena ATCC 29151, however, flavodoxin is constitutively formed regardless of the iron supply.Replacement of ferredoxin by flavodoxin had no effect on photosynthetic electron transport, whereas nitrogen fixation was decreased under low iron conditions. As ferredoxin and flavodoxin exhibited the same Km values as electron donors to nitrogenase, an iron-limited synthesis of active nitrogenase was assumed as the reason for inhibited nitrogen fixation. Anabaena ATCC 29211 generally lacks the potential to synthesize flavodoxin. Under iron-starvation conditions, ferredoxin synthesis is limited, with a negative effect on photosynthetic oxygen evolution.  相似文献   
114.
L7811鼠腹水肿瘤细胞^31P核磁共振的研究   总被引:1,自引:0,他引:1  
用~(31)P核磁共振技术(~(31)P-NMR)研究了L_(7811)鼠腹水肿瘤细胞和615系鼠胸腺细胞(正常对照细胞)。结果发现在肿瘤晚期阶段,L_(7811)腹水肿瘤细胞的含磷化合物未进入完全不活跃状态。此外,腹水肿瘤细胞的磷脂组成与含量亦有明显改变。因此,~(31)P-NMR谱可做为观察肿瘤细胞内能量生成和某些磷脂合成宏观动态过程的一项参考指标。  相似文献   
115.
Regional Reductions of Transketolase in Thiamine-Deficient Rat Brain   总被引:1,自引:0,他引:1  
Abstract: Thiamine deficiency impairs oxidative metabolism and causes metabolic encephalopathy. An early reduction in transketolase (TK) activity may be an important pathogenic event. To assess the role of TK, we have delineated the regional/cellular distribution of TK protein and mRNA in adult rat brain in pyrithiamine-induced thiamine deficiency. TK activity declined in both vulnerable and spared regions. Immunoblots showed a parallel reduction of TK protein. With a few exceptions, immunocytochemistry indicated an overall decline of TK immunoreactivity and the decrease was not specific to vulnerable areas. In contrast to the pronounced, general decline of TK protein, in situ hybridization revealed a regional decrease of 0–25% of TK mRNA in thiamine deficiency. Northern blots indicated a similar level of TK mRNA in whole brain in thiamine deficiency. These results show that the decline of TK activity results from a proportional decrease of TK protein, and the deficiency may be due to an instability of TK protein or an inhibition of TK mRNA translation. The lack of correlation of the distribution, and the absence of specific alteration, of TK in affected regions suggest that the reduced TK may not be linked directly to selective vulnerability in thiamine deficiency.  相似文献   
116.
The effects of nitrogen starvation in the presence or absence of sodium in the culture medium were monitored in batch cultures of the marine diatom Phaeodactylum tricornutum Bohlin. During nitrogen starvation in the presence of sodium, cell nitrogen and chlorophyll a decreased, mainly as a consequence of continued cell division. These decreases were accompanied by decreases in the rates of photosynthesis and respiration. There was no change in either cell volume or carbohydrate, but both carbon and lipid increased. During nitrogen starvation in the absence of sodium, cell division ceased. Cell nitrogen and chlorophyll a remained constant, and respiration did not decrease, but the changes in the photosynthetic rate and the lipid content per cell were similar to cultures that were nitrogen-starved in the presence of sodium. The carbon-to-nitrogen ratio increased in both cultures. Nitrogen, in the form of nitrate, and sodium were resupplied to cultures that had been preconditioned in nitrogen- and sodium-deficient medium for 5 d. Control cultures to which neither nitrate or sodium were added remained in a static state with respect to cell number, volume, and carbohydrate but showed slight increases in lipid. Cells in cultures to which 10 mM nitrate alone was added showed a similar response to cultures where no additions were made. Cells in cultures to which 50 mM sodium alone was added divided for 2 d, with concomitant small decreases in all measured constituents. Cell division resumed in cultures to which both sodium and nitrate were added. The lipid content fell dramatically in these cells and was correlated to metabolic oxidation via measured increases in the activity of the glyoxylate cycle enzyme, isocitrate lyase. We conclude that lipids are stored as a function of decreased growth rate and are metabolized to a small extent when cell division resumes. However, much higher rates of metabolism occur if cell division resumes in the presence of a nitrogen source.  相似文献   
117.
Abstract: Reactive oxygen species have been implicated in neuronal injury associated with various neuropathological disorders. However, little is known regarding the relationship between antioxidant enzyme capacity and resultant toxicity. The antioxidant pathways of primary cerebrocortical cultures were directly examined using a novel technique that measures pentose phosphate pathway (PPP) activity, which is enzymatically coupled to glutathione peroxidase (GPx) detoxification of hydrogen peroxide (H2O2). PPP activity was quantified from data obtained by gas chromatography/mass spectrometry analysis of released labeled lactate following metabolic degradation of [1,6-13C2,6,6-2H2]glucose by cerebrocortical cultures. The antioxidant capacity of these cultures was systematically evaluated using H2O2, and the resultant toxicity was quantified by lactate dehydrogenase release. Exposure of primary mixed and purified astrocytic cultures to H2O2 caused stimulation of PPP activity in a concentration-dependent fashion from 0.25 to 22.2% and from 6.9 to 66.7% of glucose metabolized to lactate through the PPP, respectively. In the mixed cultures, chelation of iron before H2O2 exposure was protective and resulted in a correlation between PPP saturation and toxicity. Conversely, addition of iron, inhibition of GPx, or depletion of glutathione decreased H2O2-induced PPP stimulation and increased toxicity. These results implicate the Fenton reaction, reflect the pivotal role of GPx in H2O2 detoxification, and contribute to our understanding of the etiological role of free radicals in neuropathological conditions.  相似文献   
118.
The effect of chronic administration of -guanidinopropionic acid (GPA) on the protein profiling, energy metabolism and right ventricular (RV) function was studied in the rat heart during the weaning and adolescence period. GPA was given in tap water (1–1.5%) using pair drink controls. The feeding of animals with GPA solution for a six week period resulted in elevation of heart to body weight ratio due to body growth retardation. GPA accumulated in the myocardium up to 67.37 ± 5.3 moles.g dry weight and the tissue content of total creatine, phosphocreatine and ATP was significantly decreased to 15%, 9% and 65% of control values respectively. Total activity of creatine kinase (CK) was not changed, but the proportion of mitochondrial (Mi) CK isoenzyme was decreased; the percentage of MB isoenzyme of CK was significantly higher. GPA treatment resulted in an elevation of the content of cardiac collagenous proteins and decrease of non-collagenous proteins in the heart; in parallel, a decrease of the collagen I to collagen III ratio was detected. The function of the RV was assessed using an isolated perfused heart with RV performing pressure-volume work. As compared to pair-drink controls, RV function was significantly impaired the GPA group: at any given right atrial filling pressure, the RV systolic pressure and the rate of pressure development were decreased by almost a factor of two. Elevation of the RV diastolic pressure with increasing pulmonary artery diastolic pressure was also significantly steeper in the GPA group which also showed decrease of cardiac output, especially at high outflow resistance. It may be assumed that chronic administration of GPA deeply influenced metabolic parameters, protein profiles and contractile function of the developing heart. On the other hand, concentrations of glucose, total lipids and triglycerides in blood plasma were not affected. All these data confirm the concept that the CK system is of central importance both for heart function and for the regulation of normal growth of cardiac myocytes.  相似文献   
119.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) serve to transduce information from agonist-bound receptors to effector enzymes or ion channels. Current models of G protein activation-deactivation indicate that the oligomeric GDP-bound form must undergo release of GDP, bind GTP and undergo subunit dissociation, in order to be in active form (GTP bound subunits and free dimers) and to regulate effectors. The effect of receptor occupation by an agonist is generally accepted to be promotion of guanine nucleotide exchange thus allowing activation of the G protein. Recent studies indicate that transphosphorylation leading to the formation of GTP from GDP and ATP in the close vicinity, or even at the G protein, catalysed by membrane-associated nucleoside diphosphate kinase, may further activate G proteins. This activation is demonstrated by a decreased affinity of G protein-coupled receptors for agonists and an increased response of G protein coupled effectors. In addition, a phosphorylation of G protein subunits and consequent phosphate transfer reaction resulting in G protein activation has also been demonstrated. Finally, endogenously formed GTP was preferentially effective in activating some G proteins compared to exogenous GTR The aim of this report is to present an overview of the evidence to date for a transphosphorylation as a means of G protein activation (see also refs [1 and 2] for reviews). (Mol Cell Biochem 157: 593, 1996)Recipient of Servier Investigator Award  相似文献   
120.
Three groups of rats were fed two types of synthetic diets for 52 d. The—A group was allowed free access to a vitamin A-deficient diet and showed classical signs of vitamin A deficiency. The brain was the only organ in our experiment where no significant weight difference was present among the three groups. In the brain, calcium concentration was significantly higher in the—A group when compared with the PF (Pair-fed; allowed restricted amount of control diet) and +A groups (allowed free access to control diet). In the tibia, calcium and magnesium concentrations were significantly lower in the—A group when compared with other two groups. Excessive accumulation of calcium in brain and apparently similar unbalance in bone, mineral concentration were observed in central nervous system (CNS) degenerative diseases. Our results suggest that abnormal metabolism of calcium and magnesium in some tissues and excessive accumulation of calcium in brain may be responsible for the development of neurological disorders in vitamin A-deficient rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号