首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7436篇
  免费   449篇
  国内免费   523篇
  2023年   68篇
  2022年   108篇
  2021年   149篇
  2020年   148篇
  2019年   218篇
  2018年   248篇
  2017年   172篇
  2016年   165篇
  2015年   160篇
  2014年   377篇
  2013年   435篇
  2012年   289篇
  2011年   428篇
  2010年   300篇
  2009年   350篇
  2008年   378篇
  2007年   386篇
  2006年   340篇
  2005年   318篇
  2004年   234篇
  2003年   224篇
  2002年   223篇
  2001年   165篇
  2000年   144篇
  1999年   136篇
  1998年   125篇
  1997年   130篇
  1996年   126篇
  1995年   93篇
  1994年   98篇
  1993年   117篇
  1992年   107篇
  1991年   91篇
  1990年   95篇
  1989年   89篇
  1988年   75篇
  1987年   79篇
  1986年   60篇
  1985年   83篇
  1984年   141篇
  1983年   109篇
  1982年   112篇
  1981年   99篇
  1980年   85篇
  1979年   81篇
  1978年   47篇
  1977年   57篇
  1976年   36篇
  1975年   35篇
  1974年   29篇
排序方式: 共有8408条查询结果,搜索用时 15 毫秒
41.
Chromium is an essential trace element and is associated with some biological pathways, especially with glucose tolerance. For these reasons, we decided to determine the concentration of chromium in two sets of Brazilian medicinal plants. The first group consisted of plants that are considered as antidiabetic, whereas the second included plants that do not have this therapeutic property. The concentration of chromium was determined by flameless atomic absorption. All the plants analyzed contain chromium in the normal range for this element, but the hypoglycemic plants contain more chromium than the others (1–4 μg/g compared to 0.5–1.5 μg/g).  相似文献   
42.
Determinants of foraging profitability in two nectarivorous butterflies   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 I studied flower selection and foraging energetics of Agraulis vanillae L. (Nymphalidae) and Phoebis sennae (Pieridae), two butterfly species common to north central Florida. I identified the major nectar resources exploited by several populations of these butterflies and, for each plant species, measured available nectar volumes and concentrations, corolla lengths, and density. I quantified foraging behaviour of each butterfly species at each nectar source (flower visitation rate and percentage of foraging time in flight), and used these data to estimate the net rate of energy intake of each butterfly species at each nectar source.
  • 2 Estimated mean energy contents of individual flowers of the eleven exploited plant species spanned three orders of magnitude, ranging between 0.015 and 9.27 joules. Mean energy content of individual flowers was strongly correlated with mean foraging profit of both butterfly species.
  • 3 Mean nectar volume strongly influenced energy content and varied widely within and among species, ranging from 0.0076 to 1.853 μ1. Nectar concentration varied between 17.1% and 40.4% sucrose-equivalents. Nectar volume was the best single predictor of foraging profitability (correlation coefficients of 0.994 and 0.984 for Phoebis and Agraulis respectively). Corolla length also strongly affected foraging profitability for both butterfly species; flower species with longer corollas were generally more profitable.
  • 4 Flower density and nectar concentration showed weak or nonsignificant associations with foraging profitability.
  • 5 The usefulness and limitations of these floral characteristics as bases for foraging selectivity, and the selective pressures foraging butterflies might place on the visited plants are discussed.
  相似文献   
43.
Summary Time-course experiments of phosphate uptake by size-fractionated phytoplankton were conducted in oligotrophic Kennedy and Sproat Lakes. The objective was to determine if large phytoplankton obtained more phosphate than smaller cells, when the nutrient was present at higher concentrations. Studies at Kennedy Lake revealed that uptake rates in the 0.2–3.0 m fraction were very sensitive to the time they were exposed to elevated concentrations; rates determined over the 60–120 min interval were less than 30% of those recorded over the 0–60 min interval. In contrast, there was little difference in uptake rates over these intervals for cells>3.0 m. At Sproat Lake phosphate incorporation into the two size fractions was followed after the aerial fertilization of the lake with inorganic nutrients. Following nutrient addition the proportion of phosphate entering the>3.0 m size fraction increased from ca. 35% to ca. 85%. Despite these observations, it is doubtful that larger cells are able to sequester enough phosphate from pulses to realize the same specific growth rates as their smaller counterparts.  相似文献   
44.
45.
46.
Apical cuttings of Solanum tuberosum L. cv. Sirtema were used al different stages of development to study long-distance transport of phosphate. The effects of two hormones, gibberellic acid (GA3) and abscisic acid (ABA), on this process were also investigated. Before tuberization, phosphate (32P) supplied to a single leaf was transported preferentially in the young and growing parts of the plant: apical bud, young leaves and roots. After tuberization, the tuber became the principal site of phosphate accumulation. GA3 treatment (10−4 M) of the tuber as well as of the leaves led to reduced transport of 32P into the tuber. By contrast, treatment of the tuber with ABA (10−4M) did not change the 32P distribution within the plant, while foliar spray with ABA greatly increased the transport into the tuber. The opposite effects of the two hormones on phosphate accumulation by tubers are discussed with regard to their opposite effects on the tuberization process.  相似文献   
47.
Martin Sprung  Udo Rose 《Oecologia》1988,77(4):526-532
Summary In common with many other suspension feeders, the freshwater mussel Dreissena polymorpha has a maximum filtration rate at low food concentrations and a maximum ingestion rate at high food concentrations. These high rates, which reflect the potential maximum food uptake of the animal, are called the filtration capacity and the ingestion capacity respectively. The ingestion capacity was attained without forming pseudofaeces with Chlamydomonas reinhardii as food. The incipient limiting level could be calculated as the quotient of these two values. A decrease of the filtration rate at high food concentrations was correlated with changes in pumping activity, which showed more frequent interruptions, or a lower level of water transport. Dreissena can filter out particles of diameter greater than 0.7 m from the water. Retention reaches a plateau at about 5 m particle diameter. Scanning electron micrographs of the arrangement of the cilia on the gill filaments are given.  相似文献   
48.
Summary The effects of CO2 enrichment on the growth, biomass partitioning, photosynthetic rates, and leaf nitrogen concentration of a grass, Bromus mollis (C3), were investigated at a favorable and a low level of nitrogen availability. Despite increases in root: shoot ratios, leaf nitrogen concentrations were decreased under CO2 enrichment at both nitrogen levels. For the low-nitrogen treatment, this resulted in lower photosynthetic rates measured at 650 l/l for the CO2-enriched plants, compared to photosynthetic rates measured at 350 l/l for the non-enriched plants. At higher nitrogen availability, photosynthetic rates of plants grown and measured at 650 l/l were greater than photosynthetic rates of the non-enriched plants measured at 350 l/l. Water use efficiency, however, was increased in enriched plants at both nitrogen levels. CO2 enrichment stimulated vegetative growth at both high and low nitrogen during most of the vegetative growth phase but, at the end of the experiment, total biomass of the high and low CO2 treatments did not differ for plants grown at low nitrogen availability. While not statistically significant, CO2 tended to stimulate seed production at high nitrogen and to decrease it at low nitrogen.  相似文献   
49.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   
50.
Effect of salinity on phosphate accumulation and injury in soybean   总被引:5,自引:0,他引:5  
Many soybean [Glycine max (L.) Merr.] genotypes that are grown in solution cultures are highly sensitive to the combination of both salinity and inorganic phosphate (Pi) in the substrate. This effect has been observed on numerous occasions on plants grown in a saline medium that contained a substantial amount of Ca (i.e., CaCl2/NaCl=0.5 on a molar basis). Because Ca is important in regulating ion transport and membrane permeability, solution culture experiments were designed to examine the effects of various concentrations of Pi and ratios of CaCl2/NaCl (0 to 0.5 on a molar basis) at a constant osmotic potential (−0.34 MPa) on this adverse interaction. Four soybean cultivars (‘Lee’, ‘Lee 74’ ‘Clark’ and ‘Clark 63’) were tested. No adverse salinity x Pi interaction was found on Lee at any ratio and leaf P and Cl were maintained below 300 and 200 mmol kg−1 dry wt, respectively. Clark, Clark 63 and Lee 74 soybean plants, on the other hand, were severely injured by solution salinity (−0.34 MPa osmotic potential) when substrate Pi was ≥0.12 mM. Reduced substrate Ca did not intensify the salinity x Pi interaction. On the contrary, the onset of injury was hastened and more severe with increased CaCl2/NaCl ratios in isotonic solutions. Shoot and root growth rates decreased as injury increased. Leaf P concentrations from these cultivars grown in saline solutions with 0.12 mM Pi were excessive (>600 mmol kg−1 dry wt) compared with concentrations commonly found in soybean leaf tissue yet they were independent of the severity of injury. Since leaf Cl increased wiht increased CaCl2/NaCl ratio, we suspect that the severity of foliar injury was related to the combined effects of excessive P and Cl within the tissue. Lee 74, the only injured cultivar examined that excluded Cl from its leaves, was less sensitive than either Clark cultivar and its injury was characteristically different. Other ion interactions were reported that may have played a role in injury susceptibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号