首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2448篇
  免费   188篇
  国内免费   56篇
  2024年   2篇
  2023年   36篇
  2022年   27篇
  2021年   52篇
  2020年   69篇
  2019年   65篇
  2018年   62篇
  2017年   54篇
  2016年   65篇
  2015年   85篇
  2014年   90篇
  2013年   116篇
  2012年   69篇
  2011年   82篇
  2010年   77篇
  2009年   96篇
  2008年   104篇
  2007年   100篇
  2006年   112篇
  2005年   87篇
  2004年   89篇
  2003年   103篇
  2002年   89篇
  2001年   82篇
  2000年   64篇
  1999年   64篇
  1998年   68篇
  1997年   52篇
  1996年   57篇
  1995年   62篇
  1994年   56篇
  1993年   39篇
  1992年   45篇
  1991年   37篇
  1990年   36篇
  1989年   24篇
  1988年   25篇
  1987年   33篇
  1986年   25篇
  1985年   26篇
  1984年   31篇
  1983年   8篇
  1982年   15篇
  1981年   26篇
  1980年   33篇
  1979年   19篇
  1978年   13篇
  1977年   16篇
  1976年   5篇
排序方式: 共有2692条查询结果,搜索用时 15 毫秒
41.
Sink-to-source transition was studied in developing sugarcane (Saccharum interspecific variety L62–96) leaves. Fully-expanded, mature sugarcane leaves were fed 14CO2 for 20 minutes, incorporating about 617 Bq. After five hours the leaves of each plant were cut into 1-cm-length segments that were weighed and then placed in scintillation cocktail for counting. All leaves younger than the leaf fed 14CO2 imported labeled photoassimilate. Three to four leaves had both importing and non-importing regions within the blade and a distinct transition region between them. A transition region was observed in leaves which had expanded to between 30 and 90 % of final blade length. Radioactivity per gram fresh weight was calculated as a measure of sink strength. Sink strength was greatest in the youngest leaf and declined with leaf age. The results of this study indicate that 1) import of photosynthate by developing sugarcane leaves occurs over a longer span of developmental ages than in dicotyledonous leaves and 2) the actual tissue region undergoing transition within such a leaf can be resolved as narrow zone between the importing and non-importing regions.  相似文献   
42.
43.
The data derived from a chloroplast DNA restriction site analysis of subtribeDendrobiinae (Orchidaceae) indicate that extreme vegetative diversification is concentrated in two limited parts of this group. Overlaying the vegetative character states onto the chloroplast DNA cladogram suggests that several xeromorphic, vegetative characters evolved in the lines leading to the above-mentioned clades. Several anatomical characters are also associated with xeromorphy. These vegetative and anatomical characters facilitated the establishment of this group in various dry habitats. On the other hand, the modifications of size and number of parenchymatous cells substantially contributed to the vegetative diversification. This fact implies that a simple structural adjustment can result in a major modification of growth habits in theDendrobiinae.  相似文献   
44.
We studied leaflet anatomy, emphasizing secretory structures, from herbarium specimens of 128 species of 44 genera of tribeCaesalpinieae, using clearings, resin sections, and scanning electron microscopy. These observations, combined with those from our three earlier papers, provide a survey of 210 species representing all genera. Seventy-three species had secretory structures: 21 had glands or gland-like trichomes, 40 had living mesophyll idioblasts, and nine had cavities (three species each had two different types). Five additional species, all inCercidium (Caesalpinia group), had paired or clustered large spheroidal, thick-walled, empty cells (veinlet idioblasts) interconnected by perforation plate-like gaps. Secretory structures have systematic significance at various taxonomic levels.  相似文献   
45.
植食性同翅目昆虫在最终接受其宿主植物的过程中,将感受从叶表层直到韧皮部筛管途中存在的多种化学物质,并导致不同的刺探和取食行为。本文就植物叶表层存在的糖类和生物碱类物质,叶肉层的多糖类、酸碱度和酚类物质以及韧皮部内的氨基酸、蛋白质、碳水化合物和植物次生物质等对昆虫寻找及取食韧皮部行为的影响作一综述,并且还探讨了植物叶肉层的细胞结构对昆虫刺探及取食行为的可能影响。此外,结合刺探电位(electrical penetration graphs,EPGs)的研究结果,还讨论了昆虫感受植物叶组织内部的各种化学和细胞结构信息的可能机制。  相似文献   
46.
Aphid activities during sieve element punctures   总被引:13,自引:0,他引:13  
Aphid salivation in sieve elements and phloem sap ingestion were linked to waveforms in the Electrical Penetration Graph (EPG). Non-viruliferousRhopalosiphum padi (L.) (Hemiptera, Aphididae) on barley yellow dwarf virus (BYDV) infected wheat could acquire the virus, which was used as an indication for phloem sap ingestion, whereas virus inoculation by viruliferous aphids on healthy plants was associated with salivation in sieve elements or other phloem cells. Probing was monitored and the waveforms recorded were related to ELISA results of test plants. The EPG patterns A, B, and C are indicative of the stylet pathway phase, whereas patterns E1 and E2 reflect the phloem (sieve element) phase with an unknown activity (E1) or with ingestion and concurrent salivation (E2). Aphids showing pathway and E1 rarely acquired virus, suggesting that little or no phloem sap ingestion can occur during these patterns, whereas those showing additionally pattern E2 did so substantially, indicating phloem sap ingestion. The main pattern related to virus inoculation was E1, although some aphids were able to inoculate plants during pathway. Pattern E1 clearly reflects the most important salivation into sieve elements. Pattern E2 had no clear contribution to virus inoculation, supporting the present hypothesis that during this pattern the saliva is mixed with the phloem sap in the single canal at the stylet tips and ingested immediately, without reaching the plant tissue. Sustained sap ingestion did not affect virus inoculation. So, BYDV inoculation mainly occurs during the first period of a sieve element puncture which is always formed by E1. Implications on persistent virus transmission are discussed.  相似文献   
47.
The floral and vegetative anatomy of the small Australian genus Aphanopetalum were studied. Wood is described for the first time and is characterized by predominantly solitary pores, scalariform vessel element perforation plates with low bar numbers, imperforate tracheary elements with distinctly bordered pits, sparse axial parenchyma, and a combination of homocellular and heterocellular rayS. Starch occurs in both axial and ray parenchyma of the wood. Stems possess unilacunar, one-trace nodes and the uncommon feature of an endodermis with well-defined Casparian stripS. Leaves have anomocytic stomata, a bifacial mesophyll and semicraspedodromous venation or a combination of semicraspedodromous and brochidodromous venation. The tetramerous flowers are apetalous or have minute petals. The compound, half-inferior gynoecium consists of essentially totally united carpels. The pattern of floral vascularization resembles different Saxifragaceae sensu lalo in that the compound sepal-plane and petal-plane traces give rise to staman bundles as well as sepal, petal, and carpel wall venation in their respective planes. The ventral ovarian bundles are fused into a single ventral complex that subdivides at the top of the ovary to form ventral bundles and to supply the one ovule in each locule. Vegetative and floral features provide compelling evidence to suggest that Aphanopetalum has its nearest relatives among the Saxifragaceae sensu lato rather than Cunoniaceae. The genus is probably best treated as forming its own subfamily (or family) among the saxifragaean alliance.  相似文献   
48.
49.
The in vivo significance of turgor-dependent unloading was evaluated by examining assimilate transport to and within intact developing seeds of Phaseolus vulgaris (cv. Redland Pioneer) and Vicia faba (cv. Coles Prolific). The osmotic potentials of the seed apoplast were low. As a result, the osmotic gradients to the seed coat symplast were relatively small (i.e. 0.1 to 0.3 MPa). Sap concentrations of sucrose and potassium in the seed apoplast and coat symplast accounted for some 45 to 60% of the osmotic potentials of these compartments. Estimated turnover times of potassium and sucrose in the seed apoplast of < 1 h were some 5 to 13 times faster than the respective turnover times in the coat symplast pools. The small osmotic gradient between the seed apoplast and coat symplast combined with the relatively rapid turnover of solutes in the apoplast pool, confers the potential for a small change in assimilate uptake by the cotyledons to be rapidly translated into an amplified shift in the cell turgor of the seed coat. Observed adjustments in the osmotic potentials of solutions infused between the coat and cotyledons of intact seed were consistent with the in vivo operation of turgor-dependent unloading of solutes from the coat. Homeostatic regulation of turgor-dependent unloading was indicated by the maintenance of apoplast osmotic potentials of intact seeds when assimilate balance was manipulated by partial defoliation or elevating pod temperature. In contrast, osmotic potentials of the coat symplast adjusted upward to new steady values over a 2 to 4 h period. The resultant downward shift in coat cell turgor could serve to integrate phloem import into the seed coat with the new rates of efflux to the seed apoplast. Circumstantial evidence for this linkage was suggested by the approximate coincidence of the turgor changes with those in stem levels of 32P used to monitor phloem transport. The results obtained provide qualified support for the in vivo operation of a turgor homeostat mechanism. It is proposed that the homeostat functions to integrate assimilate demand by the cotyledons with efflux from and phloem import into the coats of developing legume seed.  相似文献   
50.
During the first 8 days of germination the Ricinus seedling is supplied with all nutrients by the endosperm via phloem transport. In 4- to 8-days-old seedlings the concentrations and contents of Fe, Cu, Mn and Zn, and nicotianamine (NA) in the endosperm, cotyledons, hypocotyl and roots were estimated. From the data obtained translocation rates and flow profiles for the metals were established. The main sink for Fe, Mn and Zn were the cotyledons whereas Cu was mainly imported into the hypocotyl. Maximum flow rates occurred between days 5 and 7, for Zn between days 6 and 8.The time kinetics of NA and divalent metal ion concentrations and contents are interpreted as co-transport. The role of NA as transport vehicle of micronutrients in the sieve tubes is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号