首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   33篇
  国内免费   6篇
  2023年   15篇
  2022年   15篇
  2021年   17篇
  2020年   18篇
  2019年   13篇
  2018年   14篇
  2017年   10篇
  2016年   13篇
  2015年   13篇
  2014年   15篇
  2013年   23篇
  2012年   14篇
  2011年   6篇
  2010年   20篇
  2009年   13篇
  2008年   12篇
  2007年   21篇
  2006年   12篇
  2005年   11篇
  2004年   9篇
  2003年   8篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1981年   2篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
21.
Hereditary spastic paraplegia (HSP) comprises a heterogeneous group of neuropathies affecting upper motor neurons and causing progressive gait disorder. Mutations in the gene SPG3A/atlastin-1 (ATL1), encoding a dynamin superfamily member, which utilizes the energy from GTP hydrolysis for membrane tethering and fusion to promote the formation of a highly branched, smooth endoplasmic reticulum (ER), account for approximately 10% of all HSP cases. The continued discovery and characterization of novel disease mutations are crucial for our understanding of HSP pathogenesis and potential treatments. Here, we report a novel disease-causing, in-frame insertion in the ATL1 gene, leading to inclusion of an additional asparagine residue at position 417 (N417ins). This mutation correlates with complex, early-onset spastic quadriplegia affecting all four extremities, generalized dystonia, and a thinning of the corpus callosum. We show using limited proteolysis and FRET-based studies that this novel insertion affects a region in the protein central to intramolecular interactions and GTPase-driven conformational change, and that this insertion mutation is associated with an aberrant prehydrolysis state. While GTPase activity remains unaffected by the insertion, membrane tethering is increased, indicative of a gain-of-function disease mechanism uncommon for ATL1-associated pathologies. In conclusion, our results identify a novel insertion mutation with altered membrane tethering activity that is associated with spastic quadriplegia, potentially uncovering a broad spectrum of molecular mechanisms that may affect neuronal function.  相似文献   
22.
The purpose of this article is to summarize recent findings on the role of serotonin in pain processing in the peripheral nervous system. Serotonin (5-hydroxtryptamine [5-HT]) is present in central and peripheral serotonergic neurons, it is released from platelets and mast cells after tissue injury, and it exerts algesic and analgesic effects depending on the site of action and the receptor subtype. After nerve injury, the 5-HT content in the lesioned nerve increases. 5-HT receptors of the 5-HT3 and 5-HT2A subtype are present on C-fibers. 5-HT, acting in combination with other inflammatory mediators, may ectopically excite and sensitize afferent nerve fibers, thus contributing to peripheral sensitization and hyperalgesia in inflammation and nerve injury.  相似文献   
23.
To explore the relationship between polyol pathway and protein kinase C (PKC), we examined PKC activities and expressions of PKC isoforms separately in endoneurial and vessel-rich epineurial tissues in diabetic mice transgenic for human aldose reductase (Tg). Tg and littermate control mice (Lm) were made diabetic by streptozotocin at 8 weeks of age and treated orally with aldose reductase inhibitor (ARI) (fidarestat 3-5 mg/kg/day) or placebo for 12 weeks. At the end, compared with non-diabetic state, sorbitol contents were increased 6.4-fold in endoneurium and 5.1-fold in epineurium in diabetic Tg, whereas the increase was detected only in endoneurium in diabetic Lm. Endoneurial PKC activity was significantly reduced in diabetic Tg. By contrast, epineurial PKC activity was increased in both diabetic Lm and diabetic Tg and there was no significant difference between the two groups. These changes were all corrected by ARI treatment. Consistent with the changes of PKC activities, diabetic Tg showed decreased expression of PKC alpha in endoneurium, whereas there was an increased expression of PKC beta II in epineurium in both diabetic Tg and diabetic Lm. These findings suggest the presence of dichotomous metabolic pathway between neural and vascular tissues in the polyol-PKC-related pathogenesis of diabetic neuropathy.  相似文献   
24.
We examined the effects of diabetes on the morphological features and regenerative capabilities of adult mouse nodose ganglia (NG) and dorsal root ganglia (DRG). By light and electron microscopy, no apoptotic cell death was detected in the ganglia obtained from either streptozotocin (STZ)-induced diabetic or normal C57BL/6J mice in vivo. Neurite regeneration from transected nerve terminals of NG and DRG explants in culture at normal (10 mM) and high (30 mM) glucose concentrations was significantly enhanced in the diabetic mice. Chromatolytic changes (i.e. swelling and migration of the nucleus to an eccentric position in the neurons, and a loss of Nissl substance in the neuronal perikarya) and apoptotic cell death (less than one-fifth of the neurons) in the cultured ganglia were present, but neither hyperglycemia in vivo nor high glucose conditions in vitro altered the morphological features of the ganglia or the ratios of apoptotic cells at 3 days in culture. By semiquantitative RT-PCR analysis, the mRNA expressions of ciliary neurotrophic factor (CNTF) in DRG from both mice were down-regulated at 1 day in culture. The expression in diabetic DRG, but not in control DRG, was significantly up-regulated at later stages (3 and 7 days) in culture. In summary, hyperglycemia is unlikely to induce cell death in the sensory ganglia, but enhances the regenerative capability of vagal and spinal sensory nerves in vitro. The up-regulation of CNTF mRNA expression during the culture of diabetic DRG may play a role in the enhanced neurite regeneration.  相似文献   
25.
目的:研究糖尿病人植物神经病变与心率变异的关系。对象:正常对照组和根据临床有无糖尿病神经病变(DAN)分组的糖尿病病人,方法:应用24小时动态心电图对正常和糖尿病人进行心率变异的线性,非线性散点图和非线性定量参数分析,结果:单纯糖尿病组SDNN,SDANN和PNN50低于正常组(P〈0.05);糖尿病+DAN组各项线性时域分析指标均低于正常和单纯糖尿病组(P〈0.01-0.001),散点图分析结果  相似文献   
26.
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover.  相似文献   
27.

Background

Leber’s hereditary optic neuropathy (LHON) is a maternally inherited disorder. The purpose of this investigation is to understand the role of mitochondrial haplotypes in the development of LHON associated with ND6 T14484C mutation in Chinese families.

Methods

One hundred fourteen subjects from ten Han Chinese families with LHON were studied by the clinical and genetic evaluation as well as molecular and biochemical analyses of mitochondrial DNA (mtDNA).

Results

Clinical evaluation revealed that ten families exhibited extremely low penetrance of visual impairment, with an average of 10%. In particular, ten (8 males/2 females) of 114 matrilineal relatives in these families exhibited the variable severity and age-at-onset in visual dysfunction. The average age-of-onset of vision loss was 19 years old. Molecular analysis of mitochondrial DNA (mtDNA) identified the homoplasmic T14484C mutation and distinct sets of variants, belonging to the Asian haplogroups B5b, D4, D4g1b, G3a2, R11, R11a and Z3, respectively. However, there was the absence of secondary LHON-associated mtDNA mutations in these ten Chinese families.

Conclusion

The low penetrance of vision loss in these Chinese pedigrees strongly indicated that the T14484C mutation was itself insufficient to produce a clinical phenotype. The absence of secondary LHON mtDNA mutations suggests that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the T14484C mutation in those Chinese families with low penentrace of vision loss. However, nuclear modifier genes and environmental factors appear to be modifier factors for the phenotypic manifestation of the T14484C mutation in these Chinese families.  相似文献   
28.
We report here the clinical, genetic, and molecular evaluations of four Han Chinese families with Leber’s hereditary optic neuropathy. Thirty-one (20 males/11 females) of 83 matrilineal relatives in these families exhibited the variable severity and age-at-onset in visual impairment. The average age-of-onset of vision loss was 22 years old. Strikingly, these penetrances of visual impairment in these Chinese families were higher than those in other 11 Chinese pedigrees carrying the only ND4 G11778A mutation. Molecular analysis identified the known G11778A mutation and distinct sets of variants belonging to the Asian haplogroups M10a and M7c2. Of these, the T14502C mutation caused the substitution of a highly conserved isoleucine for valine at position 58 in ND6. This mutation has been associated with LHON in other Chinese families with very low penetrance of LHON. Thus, the deficient activities of complex I, caused by G11778A mutation, would be worsened by the T14502C mutation in these four Chinese families. As a result, mitochondrial dysfunctions would lead to the high penetrance and expressivity of visual loss in these Chinese families carrying both G11778A and T14502C mutations than other 11 Chinese families carrying only G11778A mutation. These data suggested that the T14502C variant may modulate the phenotypic manifestation of the G11778A mutation in these Chinese pedigrees.  相似文献   
29.
Acyl carrier proteins of mitochondria (ACPMs) are small (∼ 10 kDa) acidic proteins that are homologous to the corresponding central components of prokaryotic fatty acid synthase complexes. Genomic deletions of the two genes ACPM1 and ACPM2 in the strictly aerobic yeast Yarrowia lipolytica resulted in strains that were not viable or retained only trace amounts of assembled mitochondrial complex I, respectively. This suggested different functions for the two proteins that despite high similarity could not be complemented by the respective other homolog still expressed in the deletion strains. Remarkably, the same phenotypes were observed if just the conserved serine carrying the phosphopantethein moiety was exchanged with alanine. Although this suggested a functional link to the lipid metabolism of mitochondria, no changes in the lipid composition of the organelles were found. Proteomic analysis revealed that both ACPMs were tightly bound to purified mitochondrial complex I. Western blot analysis revealed that the affinity tagged ACPM1 and ACPM2 proteins were exclusively detectable in mitochondrial membranes but not in the mitochondrial matrix as reported for other organisms. Hence we conclude that the ACPMs can serve all their possible functions in mitochondrial lipid metabolism and complex I assembly and stabilization as subunits bound to complex I.  相似文献   
30.
Increasing the expression of Hsp70 (heat-shock protein 70) can inhibit sensory neuron degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy) is associated with the gradual decline of sensory neuron function, we evaluated whether increasing Hsp70 was sufficient to improve several indices of neuronal function. Hsp90 is the master regulator of the heat-shock response and its inhibition can up-regulate Hsp70. KU-32 (N-{7-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyl-tetrahydro-2H-pyran-2-yloxy]-8-methyl-2-oxo-2H-chromen-3-yl}acetamide) was developed as a novel, novobiocin-based, C-terminal inhibitor of Hsp90 whose ability to increase Hsp70 expression is linked to the presence of an acetamide substitution of the prenylated benzamide moiety of novobiocin. KU-32 protected against glucose-induced death of embryonic DRG (dorsal root ganglia) neurons cultured for 3 days in vitro. Similarly, KU-32 significantly decreased neuregulin 1-induced degeneration of myelinated Schwann cell DRG neuron co-cultures prepared from WT (wild-type) mice. This protection was lost if the co-cultures were prepared from Hsp70.1 and Hsp70.3 KO (knockout) mice. KU-32 is readily bioavailable and was administered once a week for 6 weeks at a dose of 20 mg/kg to WT and Hsp70 KO mice that had been rendered diabetic with streptozotocin for 12 weeks. After 12 weeks of diabetes, both WT and Hsp70 KO mice developed deficits in NCV (nerve conduction velocity) and a sensory hypoalgesia. Although KU-32 did not improve glucose levels, HbA1c (glycated haemoglobin) or insulin levels, it reversed the NCV and sensory deficits in WT but not Hsp70 KO mice. These studies provide the first evidence that targeting molecular chaperones reverses the sensory hypoalgesia associated with DPN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号