首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   28篇
  国内免费   16篇
  2023年   3篇
  2022年   12篇
  2021年   7篇
  2020年   7篇
  2019年   23篇
  2018年   22篇
  2017年   17篇
  2016年   11篇
  2015年   15篇
  2014年   44篇
  2013年   49篇
  2012年   34篇
  2011年   38篇
  2010年   33篇
  2009年   36篇
  2008年   30篇
  2007年   51篇
  2006年   27篇
  2005年   38篇
  2004年   21篇
  2003年   9篇
  2002年   8篇
  2001年   8篇
  2000年   13篇
  1999年   7篇
  1998年   13篇
  1997年   12篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   28篇
  1984年   62篇
  1983年   34篇
  1982年   49篇
  1981年   19篇
  1980年   16篇
  1979年   9篇
  1978年   13篇
  1977年   6篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
排序方式: 共有882条查询结果,搜索用时 250 毫秒
81.
82.
Endogenous ethanolamides (fatty acid amides), including arachidonyl ethanolamide (anandamide, AEA), oleoyl ethanolamide (OEA), and palmitoyl ethanolamide (PEA), are substrates of fatty acid amide hydrolase (FAAH). FAAH may play an important role for pain, anxiety/depression, and metabolic disorders. Ethanolamides are considered to be potential pharmacodynamic biomarkers to determine target engagement for FAAH inhibition by novel pharmaceutical agents. A highly selective, sensitive, and high-throughput liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous quantitation of AEA, OEA, and PEA in human plasma. The method employed D4-AEA, D4-OEA, and 13C2-PEA as “surrogate analytes” to establish the concentration–mass response relationship, i.e. a regression equation. The concentrations of AEA, OEA, and PEA were calculated based on the regression equations derived from the surrogate analytes. This approach made it possible to prepare calibration standard and quality control (QC) samples in plasma devoid of interferences from the endogenous analytes. The analytical methodology required 150 μL of human plasma that was processed via liquid–liquid extraction (LLE) using a 96-well plate format. Chromatographic separation was achieved with a reversed-phase high performance liquid chromatography (HPLC) column using gradient elution, and the run time was 3 min. The method was fully validated and it demonstrated acceptable accuracy, precision, linearity, and specificity. The lower limit of quantitation (LLOQ) was 0.1/0.5/0.5 ng/mL for AEA/OEA/PEA, which was sensitive enough to capture the basal plasma levels in healthy subjects. Bench-top stability in plasma, freeze–thaw stability in plasma, frozen long-term stability in plasma, autosampler stability, and stock solution stability all met acceptance criteria (%Bias within ±12.0%). Characterization of stability in purchased/aged blood indicated that ethanolamides are subject to degradation mediated by intracellular membrane-bound FAAH, which has been shown to be inhibited by phenylmethylsulfonyl fluoride (PMSF). In the presence of PMSF, ethanolamide levels increased slightly over time, suggesting that blood cells release ethanolamides into plasma. Whole blood stability conducted in fresh blood immediately following collection revealed that there was significant elevation of ethanolamide concentrations (∼1.3–2.0-fold on ice and ∼1.5–3.0-fold at room temperature by 2 h), indicating that de novo synthesis and release from blood cells were the predominant factors affecting ethanolamide concentrations ex vivo. Accordingly, conditions that ensured rapid separation of plasma from blood cells and consistency in the blood harvesting procedures were established and implemented for clinical studies to minimize the ex vivo elevation of plasma ethanolamide concentrations. The variability (intra-subject and inter-subject) of plasma ethanolamide levels was evaluated in healthy subjects during a Phase 0 study (no drug administration) that simulated the design of single-ascending dose and multiple-ascending dose clinical trials in terms of sample collection time points, population, food, and activity. The data indicated there was relatively large inter- and intra-subject variation in plasma ethanolamide concentrations. In addition, apparent variations due to time of day and/or food effects were also revealed. Understanding the variability of ethanolamide levels in humans is very important for study design and data interpretation when changes in ethanolamide levels are used as target engagement biomarkers in clinical trials.  相似文献   
83.
The Mu phage virion contains tail-spike proteins beneath the baseplate, which it uses to adsorb to the outer membrane of Escherichia coli during the infection process. The tail spikes are composed of gene product 45 (gp45), which contains 197 amino acid residues. In this study, we purified and characterized both the full-length and the C-terminal domains of recombinant gp45 to identify the functional and structural domains. Limited proteolysis resulted in a Ser64-Gln197 sequence, which was composed of a stable C-terminal domain. Analytical ultracentrifugation of the recombinant C-terminal domain (gp45-C) indicated that the molecular weight of gp45-C was about 58 kDa and formed a trimeric protomer in solution. Coprecipitation experiments and a quartz crystal microbalance (QCM) demonstrated that gp45-C irreversibly binds to the E. coli membrane. These results indicate that gp45 shows behaviors similar to tail-spike proteins of other phages; however, gp45 did not show significant sequence homology with the other phage tail-spike structures that have been identified.  相似文献   
84.
Helicoverpa armigera is a major pest of agricultural crops and has developed resistance to various insecticides. A P-glycoprotein (Pgp) with ATPase activity likely to be involved in insecticide resistance was purified and characterized from insecticide-resistant H. armigera. The purification was 18-fold with 3% yield. The optimum pH and temperature were found to be 7.4 and 30-40 °C, respectively. Kinetic studies indicated that this enzyme had a Km value of 1.2 mM for ATP. Pgp from H. armigera was partially sequenced and found to be homologous to conserved sequences of mammalian Pgps. Pesticides stimulated H. armigera Pgp ATPase activity with a maximum stimulation of up to 40%. Quenching of the intrinsic tryptophan fluorescence of purified Pgp was used to quantitate insecticide binding. Using the high-affinity fluorescent substrate, tetramethylrosamine, transport was monitored in real time in proteoliposomes containing H. armigera Pgp. The presence of Pgp could be one of the reasons for insecticide resistance in this pest.  相似文献   
85.
Tanai Cardona 《BBA》2010,1797(3):425-433
Cyanobacteria adapt to varying light conditions by controlling the amount of excitation energy to the photosystems. On the minute time scale this leads to redirection of the excitation energy, usually referred to as state transitions, which involves movement of the phycobilisomes. We have studied short-term light adaptation in isolated heterocysts and intact filaments from the cyanobacterium Nostoc punctiforme ATCC 29133. In N.punctiforme vegetative cells differentiate into heterocysts where nitrogen fixation takes place. Photosystem II is inactivated in the heterocysts, and the abundancy of Photosystem I is increased relative to the vegetative cells. To study light-induced changes in energy transfer to Photosystem I, pre-illumination was made to dark adapted isolated heterocysts. Illumination wavelengths were chosen to excite Photosystem I (708 nm) or phycobilisomes (560 nm) specifically. In heterocysts that were pre-illuminated at 708 nm, fluorescence from the phycobilisome terminal emitter was observed in the 77 K emission spectrum. However, illumination with 560 nm light caused quenching of the emission from the terminal emitter, with a simultaneous increase in the emission at 750 nm, indicating that the 560 nm pre-illumination caused trimerization of Photosystem I. Excitation spectra showed that 560 nm pre-illumination led to an increase in excitation transfer from the phycobilisomes to trimeric Photosystem I. Illumination at 708 nm did not lead to increased energy transfer from the phycobilisome to Photosystem I compared to dark adapted samples. The measurements were repeated using intact filaments containing vegetative cells, and found to give very similar results as the heterocysts. This demonstrates that molecular events leading to increased excitation energy transfer to Photosystem I, including trimerization, are independent of Photosystem II activity.  相似文献   
86.
In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH 6.0 and compared it to that from horseradish peroxidase (HRP). Results showed that the affinity of rice Hb1 for H2O2 was 86-times lower than that of HRP (Km = 23.3 and 0.27 mM, respectively) and that the catalytic efficiency of rice Hb1 for the oxidation of guaiacol using H2O2 as electron donor was 2838-times lower than that of HRP (kcat/Km = 15.8 and 44 833 mM−1 min−1, respectively). Also, results from this work showed that rice Hb1 is not chemically modified and binds CO after incubation with high H2O2 concentration, and that it poorly protects recombinant Escherichia coli from H2O2 stress. These observations indicate that rice Hb1 inefficiently scavenges H2O2 as compared to a typical plant peroxidase, thus indicating that non-symbiotic Hbs are unlikely to function as peroxidases in planta.  相似文献   
87.
The aim of the study was to evaluate the amount of fluoride remaining in the oral cavity of children after brushing with fluoride gel (1.25% F). The study involved six groups of 7-year-old and six groups of 11-year-old children. The procedure was carried out according to the manufacturer’s recommendations. Fluoride concentrations were determined using ion-selective fluoride electrode. No statistically significant difference was found between the amount of fluorides that remained in the oral cavity of younger and older age group (1.2 and 1.3 mg, respectively; p > 0.05). The amount of fluorides swallowed during the procedure in both age groups proves to be within acceptable limit, as far as risk of acute poisoning symptoms is concerned. The individual daily fluoride exposure during the day of procedure seems to be twice as high compared to average fluoride intake from diet and dentifrice, and it does not exceed Tolerable Upper Intake Level for children more than 8. In younger children, it seems justifiable to reduce the amount of the preparation applied on a toothbrush, especially when daily use of the gel is recommended.  相似文献   
88.
The methyltransferase RlmA(II) (formerly TlrB) is found in many Gram-positive bacteria, and methylates the N-1 position of nucleotide G748 within the loop of hairpin 35 in 23S rRNA. Methylation of the rRNA by RlmA(II) confers resistance to tylosin and other mycinosylated 16-membered ring macrolide antibiotics. We have previously solved the solution structure of hairpin 35 in the conformation that is recognized by the RlmA(II) methyltransferase from Streptococcus pneumoniae. It was shown that while essential recognition elements are located in hairpin 35, the interactions between RlmA(II) and hairpin 35 are insufficient on their own to support the methylation reaction. Here we use biochemical techniques in conjunction with heteronuclear/homonuclear nuclear magnetic resonance spectroscopy to define the RNA structures that are required for efficient methylation by RlmA(II). Progressive truncation of the rRNA substrate indicated that multiple contacts occur between RlmA(II) and nucleotides in stem-loops 33, 34 and 35. RlmA(II) appears to recognize its rRNA target through specific surface shape complementarity at the junction formed by these three helices. This means of recognition is highly similar to that of the orthologous Gram-negative methyltransferase, RlmA(I) (formerly RrmA), which also interacts with hairpin 35, but methylates at the adjacent nucleotide G745.  相似文献   
89.
TIP48 and TIP49 are two related and highly conserved eukaryotic AAA(+) proteins with an essential biological function and a critical role in major pathways that are closely linked to cancer. They are found together as components of several highly conserved chromatin-modifying complexes. Both proteins show sequence homology to bacterial RuvB but the nature and mechanism of their biochemical role remain unknown. Recombinant human TIP48 and TIP49 were assembled into a stable high molecular mass equimolar complex and tested for activity in vitro. TIP48/TIP49 complex formation resulted in synergistic increase in ATPase activity but ATP hydrolysis was not stimulated in the presence of single-stranded, double-stranded or four-way junction DNA and no DNA helicase or branch migration activity could be detected. Complexes with catalytic defects in either TIP48 or TIP49 had no ATPase activity showing that both proteins within the TIP48/TIP49 complex are required for ATP hydrolysis. The structure of the TIP48/TIP49 complex was examined by negative stain electron microscopy. Three-dimensional reconstruction at 20 A resolution revealed that the TIP48/TIP49 complex consisted of two stacked hexameric rings with C6 symmetry. The top and bottom rings showed substantial structural differences. Interestingly, TIP48 formed oligomers in the presence of adenine nucleotides, whilst TIP49 did not. The results point to biochemical differences between TIP48 and TIP49, which may explain the structural differences between the two hexameric rings and could be significant for specialised functions that the proteins perform individually.  相似文献   
90.
The human immunodeficiency virus 1 (HIV-1) protease (PR) is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 PR has one catalytic site formed by the homodimeric enzyme. We chemically synthesized fully active HIV-1 PR using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 PR formed crystals that diffracted to 1.04- and 1.2-A resolution, respectively. These atomic-resolution structures revealed additional structural details of the HIV-1 PR's interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号