首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1912篇
  免费   89篇
  国内免费   165篇
  2023年   22篇
  2022年   36篇
  2021年   25篇
  2020年   46篇
  2019年   41篇
  2018年   55篇
  2017年   44篇
  2016年   34篇
  2015年   39篇
  2014年   90篇
  2013年   164篇
  2012年   72篇
  2011年   111篇
  2010年   42篇
  2009年   76篇
  2008年   87篇
  2007年   76篇
  2006年   69篇
  2005年   73篇
  2004年   58篇
  2003年   73篇
  2002年   61篇
  2001年   53篇
  2000年   50篇
  1999年   39篇
  1998年   42篇
  1997年   37篇
  1996年   27篇
  1995年   41篇
  1994年   47篇
  1993年   41篇
  1992年   31篇
  1991年   20篇
  1990年   26篇
  1989年   21篇
  1988年   17篇
  1987年   22篇
  1986年   22篇
  1985年   25篇
  1984年   22篇
  1983年   15篇
  1982年   29篇
  1981年   16篇
  1980年   27篇
  1979年   16篇
  1978年   12篇
  1977年   14篇
  1976年   16篇
  1974年   15篇
  1973年   11篇
排序方式: 共有2166条查询结果,搜索用时 771 毫秒
151.
The mosquito Anopheles stephensi Liston (Diptera: Culicidae) is the urban vector of malaria in several countries of the Middle East and Indian subcontinent. Extensive use of residual insecticide spraying for malaria vector control has selected An. stephensi resistance to DDT, dieldrin, malathion and other organophosphates throughout much of its range and to pyrethroids in the Middle East. Metabolic resistance mechanisms and insensitivity to pyrethroids, so-called knockdown resistance (kdr), have previously been reported in An. stephensi. Here we provide molecular data supporting the hypothesis that a kdr-like pyrethroid-resistance mechanism is present in An. stephensi. We found that larvae of a pyrethroid-selected strain from Dubai (DUB-R) were 182-fold resistant to permethin, compared with a standard susceptible strain of An. stephensi. Activities of some enzymes likely to confer pyrethroid-resistance (i.e. esterases, monooxygenases and glutathione S-transferases) were significantly higher in the permethrin-resistant than in the susceptible strain, but the use of synergists--piperonyl butoxide (PBO) to inhibit monooxygenases and/or tribufos (DEF) to inhibit esterases--did not fully prevent resistance in larvae (permethrin LC50 reduced by only 51-68%), indicating the involvement of another mechanism. From both strains of An. stephensi, we obtained a 237-bp fragment of genomic DNA encoding segment 6 of domain II of the para type voltage-gated sodium channel, i.e. the putative kdr locus. By sequencing this 237 bp fragment, we identified one point mutation difference involving a single A-T base change encoding a leucine to phenylalanine amino acid substitution in the pyrethroid-resistant strain. This mutation appears to be homologous with those detected in An. gambiae and other insects with kdr-like resistance. A diagnostic polymerase chain reaction assay using nested primers was therefore designed to detect this mechanism in An. stephensi.  相似文献   
152.
The tolerance of 26 Bacillus species isolated from alkaline fermented foods, five other bacilli and nine non spore-forming bacteria to alkaline pH and ammonia was determined. All grew at pH 7, 8 and 9 in the presence of 930 mmol l-1 NH4 + at pH 7.0, and in the presence of NH3 concentrations up to 5 mmol l-1 at pH 7.0 and 8.0. At higher NH3 concentrations, growth of some of the bacteria was inhibited and at 500 mmol l-1 only B. pasteurii and B. pumilus grew. Bacteria from alkaline food fermentations included strains relatively sensitive to NH3 (inhibited by 50 mmol l-1) and relatively tolerant strains (grew in the presence of 300 mmol l-1) and there was no evidence that they were more tolerant to NH3 than bacteria not associated with these fermentations.  相似文献   
153.
The gene for a highly alkaline pectate lyase, Pel-4A, from alkaliphilic Bacillus sp. strain P-4-N was cloned, sequenced, and overexpressed in Bacillus subtilis cells. The deduced amino acid sequence of the mature enzyme (318 amino acids, 34 805 Da) showed moderate homology to those of known pectate lyases in the polysaccharide lyase family 1. The purified recombinant enzyme had an isoelectric point of pH 9.7 and a molecular mass of 34 kDa, and exhibited a very high specific activity compared with known pectate lyases reported so far. The enzyme activity was stimulated 1.6 fold by addition of NaCl at an optimum of 100 mM. When Pel-4A was stored at 50°C for 60 h, striking stabilization by 100 mM NaCl was observed in a pH range from 5 to 11.5, whereas it was stable only around pH 11 in the absence of NaCl. Received: June 10, 2000 / Accepted: October 3, 2000  相似文献   
154.
155.
The ubiquitous glyoxalase system, which is composed of two enzymes, removes cellular cytotoxic methylglyoxal (MG). In an effort to identify critical residues conserved in the evolution of the first enzyme in this system, glyoxalase I (GlxI), as well as the structural implications of sequence alterations in this enzyme, a search of the National Center for Biotechnology Information (NCBI) database of unfinished genomes was undertaken. Eleven putative GlxI sequences from pathogenic organisms were identified and analyses of these sequences in relation to the known and previously identified GlxI enzymes were performed. Several of these sequences show a very high similarity to the Escherichia coli GlxI sequence, most notably the 79% identity of the sequence identified from Yersinia pestis, the causative agent of bubonic plague. In addition to the conservation of residues critical to binding the catalytic metal in all of the proposed GlxI enzymes, four regions in the Homo sapiens GlxI enzyme are absent in all of the bacterial GlxI sequences, with the exception of Pseudomonas putida. Removal of these regions may alter the active-site conformation of the bacterial enzymes in relation to that of the H. sapiens. These differences may be targeted for the development of inhibitors selective to the bacterial enzymes. Received: 13 October 1999 / Accepted: 17 January 2000  相似文献   
156.
Extracellular alginate lyase was purified from the culture supernatant of Corynebacterium sp. isolated from the sewage of a sea tangle processing factory in order to elucidate the structure—function relationship of alginate lyase. The electrophoretically homogeneous enzyme was shown to have a molecular mass of 27 kDa by sodium dodecyl sulfate (SDS)—polyacrylamide gel electrophoresis (PAGE) and by gel filtration, with an isoelectric point of 7.3. The molecular mass from amino acid analysis was 28.644 kDa. The optimal pH and temperature for the enzyme reaction were around 7.0 and 55°C, respectively. Metal compounds such as MnCl2 and NiCl2 increased the enzyme activity. The enzyme was identified as the endolytic poly(-L-guluronate)lyase, which was active on poly(-L-1,4-guluronate) and caused a rapid decrease in the viscosity of alginate solution. Measurement of the far-UV circular dichroic spectrum of the enzyme molecule gave a spectrum with a deep trough at 215nm accompanied by a shallow one at around 237 nm, and with a high peak at 197 nm and a much lower one at 230 nm. This spectrum was most likely to be that of the -form of the enzyme molecule and resembled poly(-D-mannuronate)lyase from Turbo cornutus (wreath shell) and poly(-L-guluronate)lyase from Vibrio sp. (marine bacterium). The near-UV circular dichroic spectrum was characteristic for aromatic amino acid residues. In the presence of 6 M urea, these spectra changed drastically in the near-UV and a little in the far-UV with the disappearance of the enzyme activity. Removal of the denaturant in the enzyme solution by dialysis restored both the activity and inherent circular dichroic spectra. The -sheets observed in alginate lyases as the major ordered structure seem to be a common conformation for the lyases.  相似文献   
157.
Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5) that inhibits pure cultures of hyper ammonia-producing bacteria (HAB). Experiments were preformed to see if: (1) S. bovis HC5 cells could inhibit the deamination of amino acids by mixed ruminal bacteria taken directly from a cow, (2) semi-purified bovicin was as effective as S. bovis HC5 cells, and 3) semi-purified and the feed additive monensin were affecting the same types of ammonia-producing ruminal bacteria. Because purified and semi-purified bovicin HC5 was as effective as S. bovis HC5 cells, it appeared that bovicin HC5 was penetrating the cell membranes of HAB before it could be degraded by peptidases and proteinases. Mixed ruminal bacteria that were successively transferred and enriched nine times with trypticase did not become significantly more resistant to either bovicin HC5 (50 AU mL−1) or monensin (5 μM), and amplified rDNA restriction analysis indicated that bovicin HC5 and monensin appeared to be selecting against the same types of bacteria.  相似文献   
158.
In humans, two main metabolic enzymes synthesize hydrogen sulfide (H2S): cystathionine γ lyase (CSE) and cystathionine β synthase (CBS). A third enzyme, 3‐mercaptopyruvate sulfurtransferase (3‐MST), synthesizes H2S in the presence of the substrate 3‐mercaptopyruvate (3‐MP). The immunohistochemistry analysis performed on human melanoma samples demonstrated that CSE expression was highest in primary tumors, decreased in the metastatic lesions and was almost silent in non‐lymph node metastases. The primary role played by CSE was confirmed by the finding that the overexpression of CSE induced spontaneous apoptosis of human melanoma cells. The same effect was achieved using different H2S donors, the most active of which was diallyl trisulfide (DATS). The main pro‐apoptotic mechanisms involved were suppression of nuclear factor‐κB activity and inhibition of AKT and extracellular signal‐regulated kinase pathways. A proof of concept was obtained in vivo using a murine melanoma model. In fact, either l ‐cysteine, the CSE substrate, or DATS inhibited tumor growth in mice. In conclusion, we have determined that the l ‐cysteine/CSE/H2S pathway is involved in melanoma progression.  相似文献   
159.
In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号