首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1912篇
  免费   89篇
  国内免费   165篇
  2023年   22篇
  2022年   36篇
  2021年   25篇
  2020年   46篇
  2019年   41篇
  2018年   55篇
  2017年   44篇
  2016年   34篇
  2015年   39篇
  2014年   90篇
  2013年   164篇
  2012年   72篇
  2011年   111篇
  2010年   42篇
  2009年   76篇
  2008年   87篇
  2007年   76篇
  2006年   69篇
  2005年   73篇
  2004年   58篇
  2003年   73篇
  2002年   61篇
  2001年   53篇
  2000年   50篇
  1999年   39篇
  1998年   42篇
  1997年   37篇
  1996年   27篇
  1995年   41篇
  1994年   47篇
  1993年   41篇
  1992年   31篇
  1991年   20篇
  1990年   26篇
  1989年   21篇
  1988年   17篇
  1987年   22篇
  1986年   22篇
  1985年   25篇
  1984年   22篇
  1983年   15篇
  1982年   29篇
  1981年   16篇
  1980年   27篇
  1979年   16篇
  1978年   12篇
  1977年   14篇
  1976年   16篇
  1974年   15篇
  1973年   11篇
排序方式: 共有2166条查询结果,搜索用时 761 毫秒
141.
142.
Many techniques have been developed for the assay of polysaccharide lyases; however, none have allowed the measurement of defined and reproducible k(cat) and K(m) values due to the inhomogeneous nature of the polymeric substrates. We have designed three different substrates for chondroitin AC lyase from Flavobacterium heparinum that can be monitored by three different techniques: UV/Vis spectroscopy, fluorescence spectroscopy, and use of a fluoride ion-selective electrode. Each is a continuous assay, free from interferences caused by other components present in crude enzyme preparations, and allows meaningful and reproducible kinetic parameters to be determined. The development of these defined synthetic substrates has opened up a wide variety of mechanistic studies that can be performed to elucidate the detailed catalytic mechanism of this, and other, polysaccharide lyases. The application of these techniques, which include kinetic isotope effects and linear free energy analyses, was not possible with the previous polymeric substrates and will allow this relatively poorly understood class of polysaccharide-degrading enzymes to be studied mechanistically.  相似文献   
143.
Ribonucleotide reductases (RNRs) are uniquely responsible for converting nucleotides to deoxynucleotides in all dividing cells. The three known classes of RNRs operate through a free radical mechanism but differ in the way in which the protein radical is generated. Class I enzymes depend on oxygen for radical generation, class II uses adenosylcobalamin, and the anaerobic class III requires S-adenosylmethionine and an iron–sulfur cluster. Despite their metabolic prominence, the evolutionary origin and relationships between these enzymes remain elusive. This gap in RNR knowledge can, to a major extent, be attributed to the fact that different RNR classes exhibit greatly diverged polypeptide chains, rendering homology assessments inconclusive. Evolutionary studies of RNRs conducted until now have focused on comparison of the amino acid sequence of the proteins, without considering how they fold into space. The present study is an attempt to understand the evolutionary history of RNRs taking into account their three-dimensional structure. We first infer the structural alignment by superposing the equivalent stretches of the three-dimensional structures of representatives of each family. We then use the structural alignment to guide the alignment of all publicly available RNR sequences. Our results support the hypothesis that the three RNR classes diverged from a common ancestor currently represented by the anaerobic class III. Also, lateral transfer appears to have played a significant role in the evolution of this protein family.  相似文献   
144.
The entire amino acid sequence of bifunctional alginate lyase from Pseudoalteromonas sp. strain No. 272 were determined by two approaches, Edman degradation of the peptides obtained from protease digestion of the enzyme protein and analysis of PCR products of the structural gene. The former resulted in incomplete amino acid sequence in the entire sequence, due to lacking of the proper peptides from the protease digestion. To compensate for this lack of sequences we applied the method of PCR of the structural gene that was initially elucidated from the primers designed from N- and C-terminal amino acid sequences of the enzyme. The results of the amino acid sequences from these two approaches showed good agreement. The enzyme consisted of 233 amino acid residues with a molecular mass of 25,549.5, including the sole W and cystine residue. The sequence homology search among the other alginate lyases from different origins indicated that they were very weakly homologous, with the exception of the sequence homology (80.3%) of Pseudoalteromonas elyakovii alginate lyase. The consensus sequence, YFKhG + Y-Q (Wong, T. Y., Preston, L. A., and Schiller, N. L. 2000. Annu. Rev. Microbiol. 54: 289–340) in the C-terminal regions was conserved. The kinetic analyses of chemical modification of some amino acid residues of the enzyme showed that W, K, and Y appeared to be important in the enzyme function.  相似文献   
145.
Thomas A  Meurisse R  Brasseur R 《Proteins》2002,48(4):635-644
We have collected all aromatic pairs (3152) involving an N-phenyl partner in a dataset of 593 proteins of the PDB: 728 of these pairs involve a partner residue less than 6 apart in the sequence. These near-sequence Phe-X pairs correspond to specific conformations that stabilize secondary structures, mainly alpha-helices when the residues are 1, 3, and 4 apart, and beta-strands when they are 2 apart in the sequence. These conformations are not spatially random and have been examined in detail. The remaining phenylalanine pairs (2424) are between partners more than 5 apart in the sequence. Of these far-sequence pairs, 34% of occurrences are in sheets. Next in frequencies are pairs that bridge a beta-strand to a helix (24%), followed by pairs that bridge a beta-strand to a random coiled structure (15%). Helix to helix pairs only constitute 12% of these far-sequence pairs. Analysis of the pairing frequency supports the hypothesis that aromatic interactions are late events of protein folding.  相似文献   
146.
In a data set of 593 nonhomologous proteins from the PDB, we have analyzed the pairing of phenylalanine, tyrosine, tryptophan, and histidine residues with their closest aromatic partner. The frequency distribution of the shortest interatomic distance of partners is bimodal with a sharp peak at approximately 3.8 A and a wider one at a longer distance. Only the 3.8 A peak corresponds to direct ring-ring interactions thus aromatic pairs. The aromatic pairs were separated into two classes, near-sequence pairs and far-sequence pairs. Near sequence pairs stabilize local structure, and far-sequence pairs stabilize tertiary structure. Far-sequence pairs (74% of all pairs) mainly bridge two beta-strands, followed by pairs that bridge a beta-strand and a helix, and pairs that bridge a beta-strand and a random coil structure. Pairs that bridge helices are rare. The secondary structure of the near-sequence pairs depends on the partner distance in the sequence. When the partners are 1, 3, or 4 residues apart in the sequence, pairs are mostly found in helical structures. When the partners are two apart, pairs are mostly found in the same beta-strand. Analysis of the frequency of near sequence pairs supports the hypothesis that aromatic pairing occurs after, rather than before, the formation of secondary structures.  相似文献   
147.
Abstract Three kinds of trisaccharides were prepared by digesting fucoidan from the brown alga Kjellmaniella crassifolia, with the extracellular enzymes of the marine bacterium Fucobacter marina. Their structures were determined as Δ4,5GlcpUA1-2(L-Fucp(3-O-sulfate)α1-3)D-Manp, Δ4,5GlcpUA1-2(L-Fucp(3-O-sulfate)α1-3)D-Manp(6-O-sulfate), and Δ4,5GlcpUA1-2(L-Fucp(2,4-O-disulfate)α1-3)D-Manp(6-O-sulfate), which indicated the existence of a novel polysaccharide in the fucoidan and a novel glycosidase in the extracellular enzymes. In order to determine the complete structure of the polysaccharide and the reaction mechanism of the glycosidase, the fucoidan was partially hydrolyzed to obtain glucuronomannan, which is the putative backbone of the polysaccharide, and its sugar sequence was determined as (-4-D-GlcpUAβ1-2D-Manpα1-)n, which disclosed that the main structure of the polysaccharide is (-4-D-GlcpUAβ1-2(L-Fucp(3-O-sulfate)α1-3)D-Manpα1-)n. Consequently, the glycosidase was deduced to be an endo-α-D-mannosidase that eliminatively cleaves the α-D-mannosyl linkage between D-Manp and D-GlcpUA residues in the polysaccharide and produces the above trisaccharides. The novel polysaccharide and glycosidase were tentatively named as sulfated fucoglucuronomannan (SFGM) and SFGM lyase, respectively.  相似文献   
148.
Yan G  Cheng S  Zhao G  Wu S  Liu Y  Sun W 《Biotechnology letters》2003,25(13):1041-1047
Substitution of Ser113 for Gly113 in the cap domain of hydroxynitrile lyase from Manihot esculenta (MeHNL) was performed by site-directed mutagenesis to improve its self-generated folding and stability under denaturation conditions. The yield of the recombinant mutant HNL1 (mut-HNL1), which had higher specific activity than the wild type HNL0 (wt-HNL0), was increased by 2 to 3-fold. Thermostability of MeHNL was also enhanced, probably due to an increase in content of the -strand secondary structure according to CD analysis. Our data in this report suggest that Ser113 significantly contributes to the in vivo folding and stability of MeHNL and demonstrates an economic advantage of mut-HNL1 over the wt-HNL0.  相似文献   
149.
150.
During intense exercise there is an augmented production of ammonia and IMP in the exercised muscle that could be related to the establishment of peripheral fatigue. In order to prevent this accumulation, the urea cycle in the liver eliminates ammonia in the form of urea and the skeletal muscle buffers the increase of ammonia via transamination reactions. In the present study we evaluated the effect of arginine, citrulline and ornithine supplementation, intermediates of the urea cycle, on the performance of sedentary and swimming-trained rats submitted to a single bout of exhaustive exercise. We also measured the glycogen content of the soleus and gastrocnemius muscles and of the liver, as well as the plasma concentrations of ammonia, urea, glutamine, glucose and lactate. The results indicate that arginine, citrulline and ornithine supplementation increased the flux of substrate through the reaction catalysed by glutamine synthetase, leading to increased glutamine production after an exhaustive bout of exercise, and of the mechanism involved in ammonia buffering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号