首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1504篇
  免费   43篇
  国内免费   148篇
  1695篇
  2024年   4篇
  2023年   35篇
  2022年   25篇
  2021年   36篇
  2020年   25篇
  2019年   31篇
  2018年   32篇
  2017年   29篇
  2016年   37篇
  2015年   25篇
  2014年   39篇
  2013年   112篇
  2012年   26篇
  2011年   46篇
  2010年   46篇
  2009年   71篇
  2008年   73篇
  2007年   87篇
  2006年   94篇
  2005年   83篇
  2004年   65篇
  2003年   64篇
  2002年   72篇
  2001年   60篇
  2000年   52篇
  1999年   54篇
  1998年   52篇
  1997年   43篇
  1996年   31篇
  1995年   36篇
  1994年   31篇
  1993年   29篇
  1992年   31篇
  1991年   23篇
  1990年   16篇
  1989年   13篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   10篇
  1984年   13篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1974年   6篇
排序方式: 共有1695条查询结果,搜索用时 15 毫秒
21.
We report the aerobic biodegradation of Microcystin-RR (MC-RR) by a bacterial strain isolated from San Roque reservoir (Córdoba – Argentina). This bacterium was identified as Sphingomonas sp. (CBA4) on the basis of 16S rDNA sequencing. The isolated strain was capable of degrading completely MC-RR (200 μg l−1) within 36 h. We have found evidence that MC-RR biodegradation pathway by this Sphingomonas sp. strain would start by demethylating MC-RR, affording an intermediate product, which is finally biodegraded by this strain within 72 h. Our results confirm that certain environmental bacteria, living in the same habitat as toxic cyanobacteria, have the capability to perform complete biodegradation of MC, leading to natural bioremediation of waterbodies. The bacterium reported here presents genetic homologies with other strains that degrade MC-LR. However, initial demethylation of MC-RR has been not described previously, raising questions on the probable presence of different biodegradation pathways for different MC variants.  相似文献   
22.
阿特拉津降解菌ATR3的分离鉴定与土壤修复   总被引:1,自引:0,他引:1  
阿特拉津因效率高、价格低廉,是我国玉米田施用最广泛的除草剂之一,但其结构稳定,残留时间长,因此对生态环境和人类健康造成了一定的危害。从长期受阿特拉津污染的玉米田土壤中筛选并鉴定阿特拉津降解菌,明确其在不同类型土壤中的去除能力。对分离出的阿特拉津降解菌ATR3进行生理生化分析和16S rRNA序列鉴定,确定菌株ATR3为节杆菌属(Arthrobacter sp.)。该菌株以阿特拉津为唯一氮源,培养48 h后对1 000 mg/L阿特拉津的去除率达到97%以上。敏感作物盆栽试验结果表明,阿特拉津在棕壤上去除最快,褐土次之,黑土最慢,说明阿特拉津在土壤中的去除过程与土壤本身的理化性质呈相关关系。同时,该菌株处理14 d后,能明显恢复玉米的各项生物学指标,说明该菌株对阿特拉津污染土壤具有良好的修复能力。为阿特拉津降解菌剂的推广利用提供参考。  相似文献   
23.
A greenhouse study was conducted over a 12-month period to investigate the fate of polycyclic aromatic hydrocarbons (PAHs) in soil using phytoremediation as a secondary treatment. The soil was pretreated by composting for 12 weeks, then planted with tall fescue (Festuca arundinacea), annual ryegrass (Lolium multiflorum), and yellow sweet clover (Melilotus officinalis). Two sets of unvegetated controls also were evaluated, one fertilized and one unfertilized. Total PAH concentrations decreased in the tall fescue, annual ryegrass, and yellow sweet clover treatments by 23.9%, 15.3%, and 9.1%, respectively, whereas the control was reduced by less than 5%. The smaller two- and most of the three-ringed compounds--naphthalene, acenaphthylene, acenaphthene, fluorene, and anthracene--were not found in detectable concentrations in any of the treatments. The most probable number analysis for microbial PAH degraders did not show any statistically significant differences among treatments. There were significant differences among treatments (p < 0.05) for the residual concentrations of five of the target PAHs. Root surface area measurements indicated that tall fescue and annual ryegrass both had significantly higher root surface area than yellow sweet clover, although the two species were not significantly different from each other. The tall fescue treatment resulted in the highest root and shoot biomass, followed by annual ryegrass and yellow sweet clover, and also had the highest percent of contaminant removal after 12 months. These results imply a positive relationship between plant biomass development and PAH biodegradation.  相似文献   
24.
一株氯氰菊酯降解菌16SrDNA,gyrB和GyrB的系统发育分析   总被引:2,自引:0,他引:2  
从农药厂污水处理池中分离得到一株氯氰菊酯降解菌,在30℃,pH7.0的条件下,无机盐培养基中100mg/L的氯氰菊酯,经过7.5天,能够降解大约52.3%,外加碳源能够明显提高其降解性能。生理生化实验结合16SrDNA,册诏和GyrB的系统发育分析,将其归为Gordonia菌属。在16SrDNA水平上,其与G.amicalis DSM44461和G.hydrophobica DSM44015^T的相似值最高,为98.1%;而在gyrB和GyrB水平上,其与G.hydrophobica JCM10086的相似值最高,分别为86.8%和91,1%。通过对所构建的系统发育树进行评估,表明16SrDNA序列适用于将分离菌株鉴定到属的水平上,而gyrB和GyrB更适用于在属内种的水平上进行系统发育的分析。  相似文献   
25.
Yu YL  Fang H  Wang X  Wu XM  Shan M  Yu JQ 《Biodegradation》2006,17(5):487-494
A fungal strain capable of utilizing chlorpyrifos as sole carbon and energy sources was isolated from soil by enrichment cultivation approach. The half-lives of degradation (DT50) for chlorpyrifos at concentrations of 1, 10, and 100 mg l−1 by the fungal strain DSP in mineral salt medium were measured to be 2.03, 2.93, and 3.49 days, respectively. Two cell-free extracts [E (1:10) and E (1:20)] from the fungal strain DSP in bran–glucose medium were prepared and used to enhance chlorpyrifos degradation on vegetables. Compared with the controls, the DT50 of chlorpyrifos were reduced by 70.3%, 65.6%, 80.6%, 80.6%, and 86.1%, and by 53.8%, 43.2%, 66.0%, 54.3%, and 67.7% on E (1:20) and E (1:10) treated pakchoi, water spinach, Malabar spinach, haricot beans, and pepper, respectively. The 7-day residual values (R 7) of chlorpyrifos on E (1:10) treated vegetables were all lower than the corresponding maximum residue levels of European Union (EU MRLs), except that the R 7 value on haricot beans was slightly higher than the corresponding EU MRLs. The results indicate that cell-free extracts could rapidly degrade chlorpyrifos residues on vegetables.  相似文献   
26.
In the last 10 years, accelerated mineralization of Atrazine (2-chloro-ethylamino-6-isopropylamino-s-triazine) has been evidenced in agricultural soils repeatedly treated with this herbicide. Here, we report on the interaction between earthworms, considered as soil engineers, and the Atrazine-degrading community. The impact of earthworm macrofauna on Atrazine mineralization was assessed in representative soil microsites of earthworm activities (gut contents, casts, burrow linings). Soil with or without earthworms, namely the anecic species Lumbricus terrestris and the endogenic species Aporrectodea caliginosa, was either inoculated or not inoculated with Pseudomonas sp. ADP, an Atrazine-degrading strain, and was either treated or not treated with Atrazine. The structure of the bacterial community, the Atrazine-degrading activity and the abundance of atzA, B and C sequences in soil microsites were investigated. Atrazine mineralization was found to be reduced in representative soil microsites of earthworm activities. Earthworms significantly affected the structure of soil bacterial communities. They also reduced the size of the inoculated population of Pseudomonas sp. ADP, thereby contributing to the diminution of the Atrazine-degrading genetic potential in representative soil microsites of earthworm activities. This study illustrates the regulation produced by the earthworms on functional bacterial communities involved in the fate of organic pollutants in soils.  相似文献   
27.
Characterization of functional and phylogenetic genes was carried out on a bacterial consortium, enriched from a water treatment system of an oilfield, that could use phenanthrene as the sole carbon source. The mixed culture degraded 130 mg phenanthrene l−1 in 16 days, which is significantly faster than previously reported pure cultures. The existence of catabolic genes (nahAc, C23O) in the mixed culture was quantitated by most probable number PCR. The plasmid encoding phenanthrene catabolic genes increased relative to the chromosome genes. Heterogeneous bacteria were present according to both PCR denaturing gradient gel electrophoresis and cloning methods, suggesting the possible existence of cooperation between different biochemical PAH-transforming pathways. Revisions requested 15 December 2005; Revisions received 23 January 2006  相似文献   
28.
New phenolic mono and bis Mannich bases incorporating benzimidazole, such as 2-(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol and 2,6-bis(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol were synthesized starting from 4-(1H-benzimidazol-2-yl)phenol. Amines used for the synthesis included dimethylamine, pyrrolidine, piperidine, N-methylpiperazine and morpholine. The CA inhibitory properties of these compounds were tested on the human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and hCA II. These new compounds, as many phenols show moderate CA inhibitory properties.  相似文献   
29.
The conversion of and toxic effects exerted by several mono- and dihalogenated C1 and C2 compounds on cultures of Xanthobacter autotrophicus GJ10 growing on 1,2-dichloroethane were investigated. Bromochloromethane, dibromomethane and 1-bromo-2-chloroethane were utilized by strain GJ10 in batch culture as a cosubstrate and sole carbon source. The rate of degradation of dihalomethanes by whole cells was lower than that of 1,2-dichloroethane, but a significant increase of the rate of dihalomethane biodegradation was observed when methanol or ethanol were added as a cosubstrate. Products of the degradation of several tested compounds by haloalkane dehalogenase were analyzed and a new metabolic pathway based on hydrolytic conversion to formaldehyde was proposed for the dihalomethanes. Strain GJ10 growing on 1,2-dichloroethane converted 2-fluoroethanol and 1-chloro-2-fluoroethane to 2-fluoroacetate, which was tolerated up to a concentration of 2.5 mM. On the basis of the results from batch cultures an inert (dichloromethane), a growth-supporting (dibromomethane) and a toxic (1,2-dibromoethane) compound were selected for testing their effects on a continuous culture of strain GJ10 growing on 1,2-dichloroethane. The compounds were added as pulses to a steady-state chemostat and the response of the culture was followed. The effects varied from a temporary decrease in cell density for dibromomethane to severe toxicity and culture washout with 1,2-dibromoethane. Our results extend the spectrum of halogenated C1 and C2 compounds that are known to be degraded by strain GJ10 and provide information on toxic effects and transformation of compounds not serving as a carbon source for this bacterium.  相似文献   
30.
The white rot fungus Phanerochaete chrysosporium, which generally mineralizes substituted aromatics to CO2, transformed linear alkylbenzene sulfonate (LAS) surfactants mainly at their alkyl side chain. Degradation of LAS was evidenced by a zone of clearing on LAS-containing agar plates and colorimetric analysis of liquid cultures. Disappearance of LAS was virtually complete within 10 days in low nitrogen (2.4 mM N), high nitrogen (24 mM N) and malt extract (ME) liquid media. After 5 days of incubation in ME medium, transformation of LAS was complete at concentrations4 mg l-1, but decreased at higher concentrations. The LAS degradation was not dependent on lignin peroxidases (LiPs) and manganese-dependent peroxidases (MnPs). Mineralization of14C-ring-LAS to 14CO2 by P. chrysosporium was <1% regardless of the culture conditions used. Thin layer chromatography and mass spectral analyses indicated that P. chrysosporium transformed LAS to sulfophenyl carboxylates (SPCs) through oxidative shortening of the alkyl side-chains. While LAS disappearance in the cultures was not dependent on LiPs and MnPs, transformation of the parent LAS moieties to SPCs was more extensive in low N medium that favors expression of these enzymes. The SPCs produced in LN cultures were shorter in chain-length than those produced in ME cultures. Also there was a notable shift in the relative abundance of odd and even chain length metabolites compared to the starting LAS particularly in the low N cultures suggesting the possible involvement of processes other than or in addition to-oxidation in the chain-shortening process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号