首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   16篇
  国内免费   16篇
  2024年   1篇
  2023年   33篇
  2022年   20篇
  2021年   37篇
  2020年   15篇
  2019年   21篇
  2018年   7篇
  2017年   9篇
  2016年   10篇
  2015年   26篇
  2014年   14篇
  2013年   11篇
  2012年   7篇
  2011年   16篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2007年   7篇
  2006年   14篇
  2005年   10篇
  2004年   4篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有344条查询结果,搜索用时 31 毫秒
11.
周强  杜芬 《生物资源》2020,42(2):194-204
利用网络药理学方法探讨甘草在抗动脉粥样硬化中的分子机制。本研究利用中医药系统药理学数据库和分析平台(traditional Chinese medicine systems pharmacology database and analysis platform,TCMSP)分析甘草中的有效活性成分,并获得有效成分的作用靶点。通过Cytoscape软件构建可视化靶点互相作用网络,对网络中的关键靶点进行基因本体(GO)富集分析和KEGG通路富集分析。结果显示甘草中40种有效活性成分的预测靶点共97个,47个靶点与动脉粥样硬化(AS)相关,其中18个是血管保护药物和脂质修饰药物的作用靶点,表明甘草可作为调控AS发展的药物。基于97个预测靶点的GO富集分析,发现甘草可参与多种生物学过程,尤其是应对外源性刺激,以及参与细胞凋亡等过程。通过构建甘草靶点与AS疾病靶点相互作用网络(PPI),确定了AKT1、MAPK3、MAPK1、JUN和CASP3等关键靶点,并对关键靶点进行KEGG富集分析,结果表明甘草主要影响调控细胞增殖、生存以及凋亡的细胞信号转导相关通路,并激活先天免疫相关信号通路,调节炎性细胞因子释放,从而发挥抗动脉粥样硬化作用。甘草具有多成分、多靶点、多途径的作用特点,主要通过PI3K-AKT信号途径、MAPK信号途径、NOD样受体信号通路调控细胞增殖和凋亡,同时发挥免疫调控作用,从而影响动脉粥样硬化的发展,由此可见,甘草可作为动脉粥样硬化疾病治疗的候选中草药。  相似文献   
12.
13.
An-Chuan Granule (ACG), a traditional Chinese medicine (TCM) formula, is an effective treatment for asthma but its pharmacological mechanism remains poorly understood. In the present study, network pharmacology was applied to explore the potential mechanism of ACG in the treatment of asthma. The tumor necrosis factor (TNF), Toll-like receptor (TLR), and Th17 cell differentiation-related, nucleotide-binding oligomerization domain (NOD)-like receptor, and NF-kappaB pathways were identified as the most significant signaling pathways involved in the therapeutic effect of ACG on asthma. A mouse asthma model was established using ovalbumin (OVA) to verify the effect of ACG and the underlying mechanism. The results showed that ACG treatment not only attenuated the clinical symptoms, but also reduced inflammatory cell infiltration, mucus secretion and MUC5AC production in lung tissue of asthmatic mice. In addition, ACG treatment notably decreased the inflammatory cell numbers in bronchoalveolar lavage fluid (BALF) and the levels of pro-inflammatory cytokines (including IL-6, IL-17, IL-23, TNF-alpha, IL-1beta and TGF-beta) in lung tissue of asthmatic mice. In addition, ACG treatment remarkably down-regulated the expression of TLR4, p-P65, NLRP3, Caspase-1 and adenosquamous carcinoma (ASC) in lung tissue. Further, ACG treatment decreased the expression of receptor-related orphan receptor (RORγt) in lung tissue but increased that of Forkhead box (Foxp3). In conclusion, the above results demonstrate that ACG alleviates the severity of asthma in a ´multi-compound and multi-target’ manner, which provides a basis for better understanding of the application of ACG in the treatment of asthma.  相似文献   
14.
Objective: The traditional Chinese medicine Caulis Sargentodoxae is widely used in the treatment of ulcerative colitis (UC), but the mechanism remains unknown. The present study aims to reveal its effective components, targets and pathways through network pharmacology and bioinformatics approaches.Materials and methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to identify effective components. The ligand-based targets prediction was achieved through SwissTargetPrediction and TargetNet. UC-related targets were identified using Gene Expression Omnibus (GEO) data and DisGeNET. The common targets of disease and components were constructed and analyzed by PPI network. Lastly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses are used to explain the functions of these common targets. Components-Targets-Pathways network was visualized and analyzed to further reveal the connection between the components and targets.Results: Eight active components and 102 key targets were identified to play an important role in UC. These targets were related to regulation of protein serine/threonine kinase activity, positive regulation of cell motility, response to molecule of bacterial origin, response to toxic substance, ERK1 and ERK2 cascade, peptidyl-tyrosine modification, inositol lipid-mediated signaling, cellular response to drug, regulation of inflammatory response and leukocyte migration. Moreover, HIF-1 signaling pathway and PI3K-Akt signaling pathway were the key targets involved in UC-related signaling pathways.Conclusion: The eight active components of Caulis Sargentodoxae mainly play a therapeutic role for UC through synergistic regulation of HIF-1 signaling pathway and PI3K-Akt signaling pathway.  相似文献   
15.
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and on atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies.  相似文献   
16.
Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been identified as an attractive target for atherosclerosis intervention. Given potential relevance of 5-cholesten-3β, 25-diol, 3-sulphate (CHOS) and PPARγ, an integrated docking method was used to study their interaction mechanisms, with the full considerations to distinct CHOS conformations and dynamic ensembles of PPARγ ligand-binding domain (PPARγ-LBD). The results revealed that this novel platform is satisfactory to the accurate determination of binding profiles, and the binding pattern of CHOS is rather similar as those of current PPARγ full/partial agonists. CHOS contributes to the stabilization of the AF2 and β-sheet surfaces of PPARγ-LBD and promotes the configuration adjustment of Ω loop, in order to inhibit the Cdk5-mediated PPARγ phosphorylation. Nonetheless, there are clear differences in term of occupation of full or partial agonist-like binding models. The energetic and geometric analyses further revealed that CHOS may be fond of partial agonist-like binding, and its sulfonic group and carbon skeleton are helpful for the binding process. We hope that the results will aid our understanding of recognitions involving CHOS with PPARγ-LBD and warrant the further aspects to pharmacological experiments.

Communicated by Ramaswamy H. Sarma  相似文献   
17.
The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static.  相似文献   
18.
Abstract

G-Protein Coupled Estrogen Receptor 1 (GPER1), also known as G-Protein Coupled Receptor 30 (GPR30) and initially considered an orphan receptor, has become one of the most important pharmacological targets in cardiovascular research. Since the gene encoding this putative receptor was cloned nearly 20 years ago, researchers have addressed its role in various aspects of physiology, including cardioprotection. Although extensive research has been carried out to understand the role of GPER1 as a pharmacological target to treat cardiovascular diseases, there are few current reviews addressing the overall cardioprotective benefits of this receptor and the signaling intermediates involved. This review considers the origins of GPER1, its cell biology, its physiological and pharmacological roles as a therapeutic target in cardiovascular disease, and what future research on GPER1 might entail. More specifically, the review focuses on GPER1 regulation of Angiotensin Type I Receptor (AT1R) and the role of estrogen receptors, epidermal growth factor receptor (EGFR) and matrix metalloproteinases (MMPs) in bringing about the cardioprotective effects of GPER1. Areas where improved knowledge of GPER1 biology is still needed to better understand the receptor’s cardioprotective effects are also discussed.  相似文献   
19.
Although the herbal pair of Euphorbia kansui (GS) and Glycyrrhiza (GC) is one of the so-called "eighteen antagonistic medicaments" in Chinese medicinal literature, it is prescribed in a classic Traditional Chinese Medicine (TCM) formula Gansui-Banxia-Tang for cancerous ascites, suggesting that GS and GC may exhibit synergistic or antagonistic effects in different combination designs. Here, we modeled the effects of GS/GC combination with a target interaction network and clarified the associations between the network topologies involving the drug targets and the drug combination effects. Moreover, the "edge-betweenness" values, which is defined as the frequency with which edges are placed on the shortest paths between all pairs of modules in network, were calculated, and the ADRB1-PIK3CG interaction exhibited the greatest edge-betweenness value, suggesting its crucial role in connecting the other edges in the network. Because ADRB1 and PIK3CG were putative targets of GS and GC, respectively, and both had functional interactions with AVPR2 approved as known therapeutic target for ascites, we proposed that the ADRB1-PIK3CG-AVPR2 signal axis might be involved in the effects of the GS-GC combination on ascites. This proposal was further experimentally validated in a H22 hepatocellular carcinoma (HCC) ascites model. Collectively, this systems-level investigation integrated drug target prediction and network analysis to reveal the combination principles of the herbal pair of GS and GC. Experimental validation in an in vivo system provided convincing evidence that different combination designs of GS and GC might result in synergistic or antagonistic effects on HCC ascites that might be partially related to their regulation of the ADRB1-PIK3CG-AVPR2 signal axis.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号