首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   2篇
  国内免费   3篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   10篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1999年   1篇
  1994年   3篇
  1993年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
21.
More and more antibody therapeutics are being approved every year, mainly due to their high efficacy and antigen selectivity. However, it is still difficult to identify the antigen, and thereby the function, of an antibody if no other information is available. There are obstacles inherent to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii) antibody numbering and IMGT. Here, we review “antibody informatics,” which may integrate the above three fields so that bridging the gaps between industrial needs and academic solutions can be accelerated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   
22.
The anti-CD20 antibody rituximab (RTX; Rituxan®, MabThera®) was the first anti-cancer antibody approved by the US Food and Drug Administration in 1997 and it is now the most-studied unconjugated therapeutic antibody. The knowledge gained over the past 15 y on the pharmacodynamics (PD) of this antibody has led to the development of a new generation of anti-CD20 antibodies with enhanced efficacy in vitro. Studies on the pharmacokinetics (PK) properties and the effect of factors such as tumor load and localization, antibody concentration in the circulation and gender on both PK and clinical response has allowed the design of optimized schedules and novel routes of RTX administration. Although clinical results using newer anti-CD20 antibodies, such as ofatumumab and obinutuzumab, and novel administration schedules for RTX are still being evaluated, the knowledge gained so far on RTX PK and PD should also be relevant for other unconjugated monoclonal antibody therapeutics, and will be critically reviewed here.  相似文献   
23.
本文综述了国内外常见的半翅目蝽类昆虫化学成分以及药理作用的研究。从生物学、化学、医学等方面阐述了此类昆虫的研究价值,为进一步研究开发提供科学依据。  相似文献   
24.
抗菌药物耐药是目前全世界面临的重要公共卫生问题之一,亟需开发有效的广谱抗菌药物以应对多重耐药革兰阴性杆菌的感染。头孢地尔是日本Shionogi公司开发的新型铁载体头孢菌素类抗菌药物。该药物对碳青霉烯耐药的肠杆菌目细菌(carbapenem resistant Enterobacterales,CRE)、铜绿假单胞菌、鲍曼不动杆菌和嗜麦芽窄食单胞菌等具有广谱强效的抗菌活性。该药物克服了革兰阴性杆菌因外膜孔道蛋白表达量下调和主动外排泵表达量上调产生的耐药性,并对丝氨酸酶和金属碳青霉烯酶具有较好的稳定性。该药可用于治疗由革兰阴性杆菌引起的复杂性尿路感染(包括肾盂肾炎)、院内获得性肺炎和呼吸机相关性肺炎。文中通过汇总头孢地尔的化学结构、抗菌作用机制、体外抗菌活性、药代动力学、药效学和临床治疗等信息,展现头孢地尔作为新型铁载体头孢菌素在治疗多重耐药革兰阴性杆菌感染中的应用前景。  相似文献   
25.
Modulating the binding affinities to IgE or changing the FcγR binding properties of anti-IgE antibodies offers an opportunity to enhance the therapeutic potential of anti-IgE antibodies, but the influence of increased affinity to IgE or reduced Fc effector function on the pharmacological properties of anti-IgE therapies remains unclear. Our studies were designed to characterize the pharmacokinetics, pharmacodynamics and immune-complex distribution of two high-affinity anti-IgE monoclonal antibodies, high-affinity anti-IgE antibody (HAE) 1 and 2, in mice and monkeys. HAE1, also known as PRO98498, is structurally similar to omalizumab (Xolair®), a humanized anti-IgE IgG1 marketed for the treatment of asthma, but differs by 9 amino acid changes in the complementarity-determining region resulting in a 23-fold improvement in affinity. HAE2 is similar to HAE1, but its Fc region was altered to reduce binding to Fcγ receptors. As expected given the decreased binding to Fcγ receptors, systemic exposure to pre-formed HAE2:IgE complexes in mice was greater (six-fold) and distribution to the liver lower (four-fold) compared with HAE1:IgE complexes. In monkeys, systemic exposure to HAE1 was similar to that previously observed for omalizumab in this species, but required comparatively lower serum drug concentrations to suppress free IgE levels. HAE2 treatment resulted in greater exposure and greater increase of total IgE, relative to HAE1, because of decreased clearance of HAE2:IgE complexes. Overall, these data suggest that increased binding affinity to IgE may provide a more effective therapeutic for asthma patients, and that retaining FcγR binding of the anti-IgE antibody is important for elimination of anti-IgE:IgE complexes.  相似文献   
26.
In vitro susceptibility assays of antifungal activity do not always accurately predict in vivo efficacy. As well as having a clear clinical importance, the ability to predict efficacy is also essential for effective screening of novel drug compounds. Initial screening of novel compounds must often be based on in vitro data. The present report describes the use of serum-MIC, an in vitro test of antifungal susceptibility, to accurately predict in vivo efficacy of echinocandin drugs in a mouse model of disseminated candidiasis. The basis of the serum-MIC method was to measure the inhibitory activity of a test compound against Candida albicans hyphal growth in the presence of pooled mouse serum. For 13 previously uncharacterized echinocandin compounds, as well as for the known echinocandin drugs, micafungin and caspofungin, serum-MIC determinations were shown to give better correlation to efficacy in the animal model than conventional, CLSI standard, in vitro antifungal susceptibility tests. The most accurate prediction of efficacy was obtained when the serum-MIC was adjusted in relation to the serum concentration at 30 min post-treatment. Furthermore, when the efficacy of micafungin was determined by measuring C. albicans kidney burden in the mouse model of infection, the adjusted serum-MIC consistently reflected the effective serum concentrations. Our data indicate that determination of serum-MIC values will facilitate prediction of the in vivo potency of new antifungal compounds such as novel echinocandins.  相似文献   
27.
Oxidative stress, inflammation and fibrosis can cause irreversible damage on cell structure and function of kidney and are key pathological factors in Diabetic Nephropathy (DN). Therefore, multi-target agents are urgently need for the clinical treatment of DN. Using Pirfenidone as a lead compound and based on the previous research, two novel series (5-trifluoromethyl)-2(1H)-pyridone analogs were designed and synthesized. SAR of (5-trifluoromethyl)-2(1H)-pyridone derivatives containing nitrogen heterocyclic ring have been established for in vitro potency. In addition, compound 8, a novel agent that act on multiple targets of anti-DN with IC50 of 90 μM in NIH3T3 cell lines, t1/2 of 4.89 ± 1.33 h in male rats and LD50 > 2000 mg/kg in mice, has been advanced to preclinical studies as an oral treatment for DN.  相似文献   
28.
The present work exploits the potential of in silico approaches for minimizing attrition of leads in the later stages of drug development. We propose a theoretical approach, wherein ‘parallel’ information is generated to simultaneously optimize the pharmacokinetics (PK) and pharmacodynamics (PD) of lead candidates. β-blockers, though in use for many years, have suboptimal PKs; hence are an ideal test series for the ‘parallel progression approach’. This approach utilizes molecular modeling tools viz. hologram quantitative structure activity relationships, homology modeling, docking, predictive metabolism, and toxicity models. Validated models have been developed for PK parameters such as volume of distribution (log Vd) and clearance (log Cl), which together influence the half-life (t1/2) of a drug. Simultaneously, models for PD in terms of inhibition constant pKi have been developed. Thus, PK and PD properties of β-blockers were concurrently analyzed and after iterative cycling, modifications were proposed that lead to compounds with optimized PK and PD. We report some of the resultant re-engineered β-blockers with improved half-lives and pKi values comparable with marketed β-blockers. These were further analyzed by the docking studies to evaluate their binding poses. Finally, metabolic and toxicological assessment of these molecules was done through in silico methods. The strategy proposed herein has potential universal applicability, and can be used in any drug discovery scenario; provided that the data used is consistent in terms of experimental conditions, endpoints, and methods employed. Thus the ‘parallel progression approach’ helps to simultaneously fine-tune various properties of the drug and would be an invaluable tool during the drug development process.  相似文献   
29.
Pulmonary alveolar proteinosis is associated with impaired alveolar macrophage differentiation due to genetic defects in the granulocyte macrophage colony-stimulating factor (GM-CSF) axis or autoantibody blockade of GM-CSF. The anti-GM-CSFRα antibody mavrilimumab has shown clinical benefit in patients with rheumatoid arthritis, but with no accompanying pulmonary pathology observed to date. We aimed to model systemic versus pulmonary pharmacodynamics of an anti-GM-CSFRα antibody to understand the pharmacology that contributes to this therapeutic margin. Mice were dosed intraperitoneal with anti-GM-CSFRα antibody, and pharmacodynamics bioassays for GM-CSFRα inhibition performed on blood and bronchoalveolar lavage (BAL) cells to quantify coverage in the circulation and lung, respectively. A single dose of 3 mg/kg of the anti-GM-CSFRα antibody saturated the systemic cellular pool, but dosing up to 10 times higher had no effect on the responsiveness of BAL cells to GM-CSF. Continued administration of this dose of anti-GM-CSFRα antibody for 7 consecutive days also had no inhibitory effect on these cells. Partial inhibition of GM-CSFRα function on cells from the BAL was only observed after dosing for 5 or 7 consecutive days at 30 mg/kg, 10-fold higher than the proposed therapeutic dose. In conclusion, dosing with anti-GM-CSFRα antibody using regimes that saturate circulating cells, and have been shown to be efficacious in inflammatory arthritis models, did not lead to complete blockade of the alveolar macrophages response to GM-CSF. This suggests a significant therapeutic window is possible with GM-CSF axis inhibition.  相似文献   
30.
The discovery of the tumor-inhibitory properties of asparaginase (ASNase) began in the early 1950s with the observation that guinea pig serum-treated lymphoma-bearing mice underwent rapid and often complete regression. About 4000 cases of acute lymphoblastic leukemia (ALL) are diagnosed very year in the US and many more through out the world. The majority of these cases are in children and young adults, making ALL the most common form of malignancy in these age groups. The treatment protocols of ALL are complex and use 6-12 drugs. Consequently, the improvement in the protocol design has improved significantly the success rate for long-term event-free survival in the past 20-30 years, which is now approximately 75% for patients afflicted with the higher risk ALL features and just above this percentage for patients with standard or good features. Despite this success, approximately 15% of patients die from ALL, making leukemic relapse the most common cause of treatment failure in pediatric oncology. ASNases have been the cornerstone of ALL therapies since the late 1970s. Native or pegylated L-asparaginase (ASNase or PEG-ASNase) are highly specific for the deamination of L-asparagine (Asn) to aspartic acid and ammonia. Depletion of Asn leads to a nutritional deprivation and inhibition of protein biosynthesis, resulting in apoptosis in T-lymphoblastic leukemias, which require Asn from external sources. The reactions of the host exposed to repeated ASNase treatments as well as the up-regulation of the mammalian enzymes to overcome the ASN-depletion toxic condition are of significant importance and may make us relearn the lessons on this important antileukemic drug.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号