首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67421篇
  免费   4660篇
  国内免费   3754篇
  2024年   108篇
  2023年   1070篇
  2022年   1523篇
  2021年   1827篇
  2020年   1820篇
  2019年   2333篇
  2018年   2232篇
  2017年   1666篇
  2016年   1967篇
  2015年   2443篇
  2014年   3594篇
  2013年   5168篇
  2012年   2385篇
  2011年   3235篇
  2010年   2615篇
  2009年   3297篇
  2008年   3562篇
  2007年   3566篇
  2006年   3313篇
  2005年   3254篇
  2004年   2835篇
  2003年   2557篇
  2002年   2342篇
  2001年   1560篇
  2000年   1344篇
  1999年   1411篇
  1998年   1422篇
  1997年   1213篇
  1996年   996篇
  1995年   1072篇
  1994年   966篇
  1993年   882篇
  1992年   770篇
  1991年   568篇
  1990年   463篇
  1989年   445篇
  1988年   445篇
  1987年   394篇
  1986年   331篇
  1985年   435篇
  1984年   585篇
  1983年   401篇
  1982年   386篇
  1981年   244篇
  1980年   238篇
  1979年   207篇
  1978年   118篇
  1977年   62篇
  1976年   53篇
  1975年   34篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
21.
A new brain protein is described which forms an insoluble complex with tubulin, with concomitant stoichiometric hydrolysis of GTP. The complex contains a maximum of one tubulin-binding protein (MW 52,500) per two tubulin dimers. The tubulin-binding protein (TBP) does not compete with colchicine, but in the presence of microtubule-associated proteins tubulin appeared less accessible to it. Proteins such as TBP might sequester tubulin and thereby function either to inhibit indiscriminate polymerization, or to promote ordered nucleation by maintaining high local concentrations.  相似文献   
22.
A. R. Main  C. M. Bull 《Oecologia》2000,122(4):574-581
Populations of the Australian sleepy lizard, Tiliqua rugosa, near Mt. Mary, South Australia carry natural infestations of two tick species Aponomma hydrosauri and Amblyomma limbatum. In field experiments at two sites, 18 km apart, lizards with experimentally increased tick loads had smaller home ranges, moved shorter distances in a day, and were found basking more but moving less often than lizards from which ticks were experimentally removed. The results were consistent for adult lizards in two years, and for sub-adults in a third year. Laboratory trials showed that juvenile lizards that had tick infestations had lower sprint speeds than uninfested siblings, and that adults with tick infestations had less endurance than those that were uninfested. The results contrast with those of a previous survey that showed that lizards with high tick loads had greater body size and remained longer at a site, but indicate that there may be a balance, for lizards, between the fitness advantages in occupying habitats with high-quality resources, and the costs from parasites that also prefer those habitats. Received: 02 March 1999 / Accepted: 07 October 1999  相似文献   
23.
The effect of cationic, anionic and nonionic detergents on the EPR spectrum of spin-labeled somatostatin has been studied. At detergent concentrations well above the critical micelle concentration, nonionic detergents do not alter the EPR spectrum. Sodium dodecyl sulfate markedly alters both the line height ratio and the hyperfine splitting constant, whilst dodecyltrimethylammonium bromide alters only slightly the hyperfine splitting constant and line height ratio. The somatostatin-sodium dodecyl sulfate complex appeared monodisperse by sedimentation equilibrium with about 17 g bound detergent per g peptide. Circular dichroic and difference spectra of the dodecyl sulfate-somatostatin complex show that the tryptophanyl residue is buried in a nonpolar environment and that the secondary and tertiary structure of the peptide is markedly altered. Sedimentation equilibrium studies suggest that two types of dodecyltrimethylammonium-somatostatin complex exist. One type resembles the dodecyl sulfate-peptide complex, whilst the other appears to include several peptide units with only about one gram bound detergent per gram peptide.  相似文献   
24.
25.
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.  相似文献   
26.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
27.
S20Y murine neuroblastoma cells appear to express a protein component(s) able to adhere specifically to the oligosaccharide portion of GM1 (oligo-GM1). To identify proteins with which the oligo-GM1 becomes closely associated, a radiolabeled (125I), photoactivatable derivative of oligo-GM1 was prepared. This was accomplished by reductive amination of the glucosyl moiety of oligo-GM1 to 1-deoxy-1-aminoglucitol, followed by reaction of the amine with sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (SASD). Crosslinking studies using the photoactivatable probe indicated that it came in close proximity to a protein with an apparent molecular mass of approximately 71 kDa. In competition experiments, as little as a 10-fold molar excess of oligo-GM1 resulted in a selective reduction in labeling of this protein; preincubation with a 200-fold molar excess of siayllactose was necessary to observe the same change in the labeling pattern, lending additional support to the hypothesis that the approximately 71-kDa protein specifically associates with oligo-GM1. Cell surface location of the oligo-GM1 binding protein was confirmed using subcellular fractionation and morphological analyses.  相似文献   
28.
29.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
30.
Spindly is a dynein adaptor involved in chromosomal segregation during cell division. While Spindly's N-terminal domain binds to the microtubule motor dynein and its activator dynactin, the C-terminal domain (Spindly-C) binds its cargo, the ROD/ZW10/ZWILCH (RZZ) complex in the outermost layer of the kinetochore. In humans, Spindly-C binds to ROD, while in C. elegans Spindly-C binds to both Zwilch (ZWL-1) and ROD-1. Here, we employed various biophysical techniques to characterize the structure, dynamics and interaction sites of C. elegans Spindly-C. We found that despite the overall disorder, there are two regions with variable α-helical propensity. One of these regions is located in the C-terminal half and is compact; the second is sparsely populated in the N-terminal half. The interactions with both ROD-1 and ZWL-1 are mostly mediated by the same two sequentially remote disordered segments of Spindly-C, which are C-terminally adjacent to the helical regions. The findings suggest that the Spindly-C binding sites on ROD-1 in the ROD-1/ZWL-1 complex context are either shielded or conformationally weakened by the presence of ZWL-1 such that only ZWL-1 directly interacts with Spindly-C in C. elegans  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号