全文获取类型
收费全文 | 89篇 |
免费 | 6篇 |
国内免费 | 2篇 |
专业分类
97篇 |
出版年
2023年 | 3篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 4篇 |
2019年 | 3篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 6篇 |
2014年 | 5篇 |
2013年 | 5篇 |
2012年 | 3篇 |
2011年 | 5篇 |
2010年 | 2篇 |
2009年 | 3篇 |
2008年 | 1篇 |
2007年 | 2篇 |
2006年 | 3篇 |
2005年 | 5篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有97条查询结果,搜索用时 0 毫秒
41.
V. B. S. Costa R. M. M. Pimentel M. G. S. Chagas G. D. Alves C. C. Castro 《Plant biology (Stuttgart, Germany)》2017,19(2):115-122
- The characteristics of petal epidermal conical cells affect the quality of the signals perceived by various pollinators. This study aimed to identify variations in micromorphological characteristics of flower petals and their relationship to melittophily, ornithophily and chiropterophily pollination systems.
- The petals of 11 species were analysed using scanning electron microscopy and optical microscopy and the micromorphological traits were described, measured and compared using Tukey's test, PCA and cluster analysis.
- Unlike chiropterophily, all melittophilous and some ornithophilous species possessed adaxial epidermal conical cells. Cluster grouping separated chiropterophilous flowers from melittophilous and ornithophilous. PCA analysis showed that the two morphometric profile of conical cells was the attribute that most strongly influenced the grouping of species. When considering the data set of the three pollination systems, melittophilous and ornithophilous plants were more similar to each other than they were to chriopterophilous species. The distance between conical cell apices is an important parameter in interactions with pollinators.
- This study facilitated recognition of smoothing pollinator resource access through petal micromorphological characteristics. Further research regarding the biometry of micromorphological traits related to pollination is required.
42.
Anthony J. Michael 《Plant molecular biology》1996,30(1):219-224
A cDNA isolated from pea petals exhibits extensive similarity to pollen allergen genes, a cytokinin-regulated cDNA from soybean suspension cultures, a partial cDNA preferentially expressed in tobacco genetic tumours, four Arabidopsis expressed sequence tags (ESTs) and fifteen rice ESTs. This diverse family of pollen allergen-likes genes may have a common ancestor or at least share common functional domains. Possession of a putative signal peptide and a presumed extracellular location is a common aspect of this family of sequences. 相似文献
43.
44.
45.
It has been suggested that gene duplication and polyploidization create opportunities for the evolution of novel characters. However, the connections between the effects of polyploidization and morphological novelties have rarely been examined. In this study, we investigated whether petal pigmentation patterning in an allotetraploid Clarkia gracilis has evolved as a result of polyploidization. Clarkia gracilis is thought to be derived through a recent polyploidization event with two diploid species, C. amoena huntiana and an extinct species that is closely related to C. lassenensis. We reconstructed phylogenetic relationships of the R2R3-MYBs (the regulators of petal pigmentation) from two subspecies of C. gracilis and the two purported progenitors, C. a. huntiana and C. lassenensis. The gene tree reveals that these R2R3-MYB genes have arisen through duplications that occurred before the divergence of the two progenitor species, that is, before polyploidization. After polyploidization and subsequent gene loss, only one of the two orthologous copies inherited from the progenitors was retained in the polyploid, turning it to diploid inheritance. We examined evolutionary changes in these R2R3-MYBs and in their expression, which reveals that the changes affecting patterning (including expression domain contraction, loss-of-function mutation, cis-regulatory mutation) occurred after polyploidization within the C. gracilis lineages. Our results thus suggest that polyploidization itself is not necessary in producing novel petal color patterns. By contrast, duplications of R2R3-MYB genes in the common ancestor of the two progenitors have apparently facilitated diversification of petal pigmentation patterns. 相似文献
46.
Rogers HJ 《Annals of botany》2006,97(3):309-315
BACKGROUND: Flowers have a species-specific, limited life span with an irreversible programme of senescence, which is largely independent of environmental factors, unlike leaf senescence, which is much more closely linked with external stimuli. TIMING: Life span of the whole flower is regulated for ecological and energetic reasons, but the death of individual tissues and cells within the flower is co-ordinated at many levels to ensure correct timing. Some floral cells die selectively during organ development, whereas others are retained until the whole organ dies. TRIGGERS: Pollination is an important floral cell death trigger in many species, and its effects are mediated by the plant growth regulator (PGR) ethylene. In some species ethylene is a major regulator of floral senescence, but in others it plays a very minor role and the co-ordinating signals involved remain elusive. Other PGRs such as cytokinin and brassinosteroids are also important but their role is understood only in some specific systems. MECHANISMS: In two floral cell types (the tapetum and the pollen-tube) there is strong evidence for apoptotic-type cell death, similar to that in animal cells. However, in petals there is stronger evidence for an autophagous type of cell death involving endoplasmic reticulum-derived vesicles and the vacuole. Proteases are important, and homologues to animal caspases, key regulators of animal cell death, exist in plants. However, their role is not yet clear. COMPARISON WITH OTHER ORGANS: There are similarities to cell death in other plant organs, and many of the same genes are up-regulated in both leaf and petal senescence; however, there are also important differences for example in the role of PGRs. CONCLUSIONS: Understanding gene regulation may help to understand cell death in floral organs better, but alone it cannot provide all the answers. 相似文献
47.
MARCUS QUINT REGINE CLAßEN-BOCKHOFF 《Botanical journal of the Linnean Society. Linnean Society of London》2006,150(4):459-477
Bruniaceae are a small family subendemic to the Cape Floristic Region. Flowers are actinomorphic, choripetalous, pentamerous and tetracyclic. The petals show diverse adaxial swellings, which have been quoted as an example of diplophylly. Developmental studies confirm the true choripetaly of the flowers, thus pointing to an affinity to the Apiales within the euasterids II. They reject, however, the hypothesis of diplophylly as the petal swellings grow out rather late and are not vascularized. According to the position, size and shape of the swellings, six petal types are distinguished, which in part have phylogenetic information. Nectaries occur on the upper part of the ovary. Nectar is exuded through modified stomata serving as secretory channels. All genera have gynoecial nectaries of the mesenchymatous type. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 459–477. 相似文献
48.
ESS models of reproductive allocation have been used extensively to explain patterns of floral diversity in angiosperms. These theoretical explorations assume that proportional allocation to pollen, ovules, and seeds, as well as to secondary features such as showy petals and nectar rewards, can evolve independently within the limits set by total resource availability. In populations of California wild radish, we have shown previously that petal size, a strong determinant of visitation by honey bee pollinators, is positively correlated with both pollen and nectar production, but not with ovule or seed number per flower. These phenotypic associations may reflect selection, environmental correlation, and/or genetic constraint. By exerting selection on the petal size : pollen number ratio over two generations, we eliminated the positive correlation between petal size and pollen production, with both characters showing significant change after a single selection episode. Once these two floral traits became uncoupled, nectar sugar production was significantly correlated only with petal size. Our results suggest that natural selection could readily alter reproductive allocation in these flowers, and that the phenotypic correlations observed in nature may be maintained by selection for effective reproductive phenotypes. 相似文献
49.
50.
YuanZHOU Cai-YunWANG HongGE FrankA.HOEBERICHTS PETERB.VISSER 《植物学报(英文版)》2005,47(6):641-650
Cell death is a common event in all types of plant organisms. Understanding the phenomenon of programmed cell death (PCD) is an important area of research for plant scientists because of its role in senescence and the post-harvest quality of ornamentals, fruits, and vegetables. In the present paper, PCD in relation to petal senescence in ornamental plants is reviewed. Morphological, anatomical, physiological,and biochemical changes that are related to PCD in petals, such as water content, sink-source relationships,hormones, genes, and signal transduction pathways, are discussed, Several approaches to improving the quality of post-harvest ornamentals are reviewed and some prospects for future research are given. 相似文献