首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3105篇
  免费   410篇
  国内免费   139篇
  2024年   6篇
  2023年   111篇
  2022年   139篇
  2021年   207篇
  2020年   173篇
  2019年   183篇
  2018年   155篇
  2017年   165篇
  2016年   128篇
  2015年   177篇
  2014年   219篇
  2013年   183篇
  2012年   150篇
  2011年   143篇
  2010年   98篇
  2009年   126篇
  2008年   168篇
  2007年   163篇
  2006年   191篇
  2005年   213篇
  2004年   167篇
  2003年   144篇
  2002年   120篇
  2001年   58篇
  2000年   38篇
  1999年   16篇
  1998年   7篇
  1997年   5篇
  1996年   1篇
排序方式: 共有3654条查询结果,搜索用时 703 毫秒
41.
Gene flow has tremendous importance for local adaptation, by influencing the fate of de novo mutations, maintaining standing genetic variation and driving adaptive introgression. Furthermore, structural variation as chromosomal rearrangements may facilitate adaptation despite high gene flow. However, our understanding of the evolutionary mechanisms impending or favouring local adaptation in the presence of gene flow is still limited to a restricted number of study systems. In this study, we examined how demographic history, shared ancestral polymorphism, and gene flow among glacial lineages contribute to local adaptation to sea conditions in a marine fish, the capelin (Mallotus villosus). We first assembled a 490‐Mbp draft genome of M. villosus to map our RAD sequence reads. Then, we used a large data set of genome‐wide single nucleotide polymorphisms (25,904 filtered SNPs) genotyped in 1,310 individuals collected from 31 spawning sites in the northwest Atlantic. We reconstructed the history of divergence among three glacial lineages and showed that they probably diverged from 3.8 to 1.8 million years ago and experienced secondary contacts. Within each lineage, our analyses provided evidence for large Ne and high gene flow among spawning sites. Within the Northwest Atlantic lineage, we detected a polymorphic chromosomal rearrangement leading to the occurrence of three haplogroups. Genotype–environment associations revealed molecular signatures of local adaptation to environmental conditions prevailing at spawning sites. Our study also suggests that both shared polymorphisms among lineages, resulting from standing genetic variation or introgression, and chromosomal rearrangements may contribute to local adaptation in the presence of high gene flow.  相似文献   
42.
43.
Having a comprehensive understanding of population structure, genetic differentiation and demographic history is important for the conservation and management of threatened species. High‐throughput sequencing (HTS) provides exciting opportunities to address a wide range of factors for conservation genetics. Here, we generated HTS data and identified 266,884 high‐quality single nucleotide polymorphisms from 82 individuals of Cupressus chengiana, to assess population genomics across the species' full range, comprising the Daduhe River (DDH), Minjiang River (MJR) and Bailongjiang River (BLJ) catchments in western China. admixture , principal components analysis and phylogenetic analyses indicated that each region contains a distinct lineage, with high levels of differentiation between them (DDH, MJR and BLJ lineages). MJR was newly distinguished compared to previous surveys, and evidence including coalescent simulations supported a hybrid origin of MJR during the Quaternary. Each of these three lineages should be recognized as an evolutionarily significant unit (ESU), due to isolation, differing genetic adaptations and different demographic history. Currently, each ESU faces distinct threats, and will require different conservation strategies. Our work shows that population genomic approaches using HTS can reconstruct the complex evolutionary history of threatened species in mountainous regions, and hence inform conservation efforts, and contribute to the understanding of high biodiversity in mountains.  相似文献   
44.
Laura E. Timm 《Molecular ecology》2020,29(12):2133-2136
From its inception, population genetics has been nearly as concerned with the genetic data type—to which analyses are brought to bear—as it is with the analysis methods themselves. The field has traversed allozymes, microsatellites, segregating sites in multilocus alignments and, currently, single nucleotide polymorphisms (SNPs) generated by high‐throughput genomic sequencing methods, primarily whole genome sequencing and reduced representation library (RRL) sequencing. As each emerging data type has gained traction, it has been compared to existing methods, based on its relative ability to discern population structural complexity at increasing levels of resolution. However, this is usually done by comparing the gold standard in one data type to the gold standard in the new data type. These gold standards frequently differ in power and in sampling density, both across a genome and throughout a spatial range. In this issue of Molecular Ecology, D’Aloia et al. apply the high‐throughput approach as fully as possible to microsatellites, nuclear loci and SNPs genotyped through an RRL method; this is coupled with a spatially dense sampling scheme. Completing a battery of population genetics analyses across data types (including a series of down‐sampled data sets), the authors find that SNP data are slightly more sensitive to fine‐scale genetic structure, and the results are more resilient to down‐sampling than microsatellites and nonrepetitive nuclear loci. However, their results are far from an unqualified victory for RRL SNP data over all previous data types: the authors note that modest additions to the microsatellites and nuclear loci data sets may provide the necessary analytical power to delineate the fine‐scale genetic structuring identified by SNPs. As always, as the field begins to fully embrace the newest thing, good science reminds us that traditional data types are far from useless, especially when combined with a well‐designed sampling scheme.  相似文献   
45.
46.
认知功能障碍可导致患者日常生活能力、社会适应能力明显下降,严重影响患者的生活质量。根据近年来众多研究显示,认知功能障碍的发生发展与基因、蛋白质、微生物等内环境因素的失调和紊乱有关。基于系统生物学的研究,梳理了近年来国内外研究学者在代谢组学、蛋白质组学、基因组学和肠道微生物组学层面对认知功能障碍的研究,并对系统生物学在认知功能障碍中的应用前景进行了展望,以期为认知功能障碍相关研究提供参考。  相似文献   
47.
48.
Periods of nutrient shortage impose strong selection on animal populations. Experimental studies of genetic adaptation to nutrient shortage largely focus on resistance to acute starvation at adult stage; it is not clear how conclusions drawn from these studies extrapolate to other forms of nutritional stress. We studied the genomic signature of adaptation to chronic juvenile malnutrition in six populations of Drosophila melanogaster evolved for 150 generations on an extremely nutrient-poor larval diet. Comparison with control populations evolved on standard food revealed repeatable genomic differentiation between the two set of population, involving >3,000 candidate SNPs forming >100 independently evolving clusters. The candidate genomic regions were enriched in genes implicated in hormone, carbohydrate, and lipid metabolism, including some with known effects on fitness-related life-history traits. Rather than being close to fixation, a substantial fraction of candidate SNPs segregated at intermediate allele frequencies in all malnutrition-adapted populations. This, together with patterns of among-population variation in allele frequencies and estimates of Tajima’s D, suggests that the poor diet results in balancing selection on some genomic regions. Our candidate genes for tolerance to larval malnutrition showed a high overlap with genes previously implicated in acute starvation resistance. However, adaptation to larval malnutrition in our study was associated with reduced tolerance to acute adult starvation. Thus, rather than reflecting synergy, the shared genomic architecture appears to mediate an evolutionary trade-off between tolerances to these two forms of nutritional stress.  相似文献   
49.
Mutations play a key role in the development of disease in an individual and the evolution of traits within species. Recent work in humans and other primates has clarified the origins and patterns of single-nucleotide variants, showing that most arise in the father’s germline during spermatogenesis. It remains unknown whether larger mutations, such as deletions and duplications of hundreds or thousands of nucleotides, follow similar patterns. Such mutations lead to copy-number variation (CNV) within and between species, and can have profound effects by deleting or duplicating genes. Here, we analyze patterns of CNV mutations in 32 rhesus macaque individuals from 14 parent–offspring trios. We find the rate of CNV mutations per generation is low (less than one per genome) and we observe no correlation between parental age and the number of CNVs that are passed on to offspring. We also examine segregating CNVs within the rhesus macaque sample and compare them to a similar data set from humans, finding that both species have far more segregating deletions than duplications. We contrast this with long-term patterns of gene copy-number evolution between 17 mammals, where the proportion of deletions that become fixed along the macaque lineage is much smaller than the proportion of segregating deletions. These results suggest purifying selection acting on deletions, such that the majority of them are removed from the population over time. Rhesus macaques are an important biomedical model organism, so these results will aid in our understanding of this species and the disease models it supports.  相似文献   
50.
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world’s largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号