全文获取类型
收费全文 | 926篇 |
免费 | 38篇 |
国内免费 | 24篇 |
专业分类
988篇 |
出版年
2024年 | 1篇 |
2023年 | 11篇 |
2022年 | 27篇 |
2021年 | 14篇 |
2020年 | 10篇 |
2019年 | 51篇 |
2018年 | 68篇 |
2017年 | 19篇 |
2016年 | 14篇 |
2015年 | 42篇 |
2014年 | 103篇 |
2013年 | 105篇 |
2012年 | 58篇 |
2011年 | 77篇 |
2010年 | 60篇 |
2009年 | 33篇 |
2008年 | 34篇 |
2007年 | 51篇 |
2006年 | 32篇 |
2005年 | 40篇 |
2004年 | 15篇 |
2003年 | 26篇 |
2002年 | 22篇 |
2001年 | 9篇 |
2000年 | 21篇 |
1999年 | 7篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1993年 | 8篇 |
1990年 | 3篇 |
1988年 | 2篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有988条查询结果,搜索用时 27 毫秒
71.
72.
Gloerich J van den Brink DM Ruiter JP van Vlies N Vaz FM Wanders RJ Ferdinandusse S 《Journal of lipid research》2007,48(1):77-85
Phytol, a branched-chain fatty alcohol, is the naturally occurring precursor of phytanic and pristanic acid, branched-chain fatty acids that are both ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha). To investigate the metabolism of phytol and the role of PPARalpha in its regulation, wild-type and PPARalpha knockout (PPARalpha-/-) mice were fed a phytol-enriched diet or, for comparison, a diet enriched with Wy-14,643, a synthetic PPARalpha agonist. After the phytol-enriched diet, phytol could only be detected in small intestine, the site of uptake, and liver. Upon longer duration of the diet, the level of the (E)-isomer of phytol increased significantly in the liver of PPARalpha-/- mice compared with wild-type mice. Activity measurements of the enzymes involved in phytol metabolism showed that treatment with a PPARalpha agonist resulted in a PPARalpha-dependent induction of at least two steps of the phytol degradation pathway in liver. Furthermore, the enzymes involved showed a higher activity toward the (E)-isomer than the (Z)-isomer of their respective substrates, indicating a stereospecificity toward the metabolism of (E)-phytol. In conclusion, the results described here show that the conversion of phytol to phytanic acid is regulated via PPARalpha and is specific for the breakdown of (E)-phytol. 相似文献
73.
Simin Feng Zhuqing Dai Anna B. Liu Jinbao Huang Nihal Narsipur Grace Guo Bo Kong Kenneth Reuhl Wenyun Lu Zisheng Luo Chung S. Yang 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2018,1863(10):1274-1284
Objective
To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD).Methods
Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17?weeks.Results
Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides.Conclusion
Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels. 相似文献74.
Among the first reported functions of 14-3-3 proteins was the regulation of tyrosine hydroxylase (TH) activity suggesting a possible involvement of 14-3-3 proteins in Parkinson's disease. Since then the relevance of 14-3-3 proteins in the pathogenesis of chronic as well as acute neurodegenerative diseases, including Alzheimer's disease, polyglutamine diseases, amyotrophic lateral sclerosis and stroke has been recognized. The reported function of 14-3-3 proteins in this context are as diverse as the mechanism involved in neurodegeneration, reaching from basal cellular processes like apoptosis, over involvement in features common to many neurodegenerative diseases, like protein stabilization and aggregation, to very specific processes responsible for the selective vulnerability of cellular populations in single neurodegenerative diseases.Here, we review what is currently known of the function of 14-3-3 proteins in nervous tissue focussing on the properties of 14-3-3 proteins important in neurodegenerative disease pathogenesis. 相似文献
75.
Adamo KB Dent R Langefeld CD Cox M Williams K Carrick KM Stuart JS Sundseth SS Harper ME McPherson R Tesson F 《Obesity (Silver Spring, Md.)》2007,15(5):1068-1075
Peroxisome proliferator-activated receptor gamma (PPARgamma) and its response gene, Acyl CoA synthetase 5 (ACSL5), which has an important role in fatty acid metabolism, may affect weight loss in response to caloric restriction. Therefore, we aimed to determine whether these genes were involved in the interindividual response to dietary treatment. Genotypic/phenotypic comparisons were made between selected obese women from the quintiles losing the most (diet responsive, n = 74) and the quintiles losing the least (diet-resistant, n = 67) weight in the first 6 weeks of a 900-kcal formula diet. Two common PPARgamma single nucleotide polymorphisms, Pro(12)Ala and C1431T, and eight polymorphisms across the ACSL5 gene were selected for single locus and haplotypic association analyses. The PPARgamma Pro(12)Ala single nucleotide polymorphism was associated with diet resistance (odds ratio = 3.48, 95% confidence interval = 1.41 to 8.56, p = 0.03), and the rs2419621, located in the 5'untranslated region of the ACSL5 gene, displayed the strongest association with diet response (odds ratio = 3.45, 95% confidence interval = 1.61 to 7.69, p = 0.001). Skeletal muscle ACSL5 mRNA expression was significantly lower in carriers of the wildtype compared with the variant rs2419621 allele (p = 0.03). Our results suggest a link between PPARgamma2 and ACSL5 genotype and diet responsiveness. 相似文献
76.
Alendronate induces osteoclast precursor apoptosis via peroxisomal dysfunction mediated ER stress 下载免费PDF全文
77.
过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma,PPARγ)是一种配体依赖性核转录因子,它具有调控细胞分化、脂肪代谢、糖代谢及炎症等多种生物学功能.机体对PPARγ转录活性的调控方式是多种多样的,包括蛋白表达水平、配体以及转录辅助因子等不同层次上的调控.近年来众多证据揭示,蛋白翻译后修饰(posttranslational modifications,PTMs)是机体调节PPARγ转录活性的另一重要方式.目前,已报道的PPARγ翻译后修饰包括磷酸化、泛素化、SUMO化和亚硝基化等,它们能够改变蛋白构象、调控蛋白相互作用、改变受体与配体间的亲和力,从而调控PPARγ下游基因的转录.重要的是,PPARγ的翻译后修饰与一些疾病如糖尿病、动脉粥样硬化、肿瘤等密切相关.本文将主要围绕PPARγ的各种翻译后修饰及其在疾病的发生、发展和治疗中的意义作一综述. 相似文献
78.
Tumour necrosis factor‐α promotes liver ischaemia‐reperfusion injury through the PGC‐1α/Mfn2 pathway
Jun Li Wenbo Ke Qi Zhou Yongzhong Wu Hong Luo Hong Zhou Bin Yang Yu Guo Qichang Zheng Yong Zhang 《Journal of cellular and molecular medicine》2014,18(9):1863-1873
Tumour necrosis factor (TNF)‐α has been considered to induce ischaemia‐reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor‐γ co‐activator (PGC)‐1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC‐1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF‐α had increased TNF‐α levels and resulted in down‐regulation of PGC‐1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF‐α by neutralizing antibody reversed PGC‐1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC‐1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF‐α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral‐Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF‐α. However, there was no up‐regulation of PGC‐1α. These findings suggest that PGC‐1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF‐α‐induced hepatic IRI. Inhibition of the TNF‐α or PGC‐1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI. 相似文献
79.
80.
Yamagishi S Ogasawara S Mizukami H Yajima N Wada R Sugawara A Yagihashi S 《Journal of neurochemistry》2008,104(2):491-499
Pioglitazone, one of thiazolidinediones, a peroxisome proliferator-activated receptor (PPAR)-γ ligand, is known to have beneficial effects on macrovascular complications in diabetes, but the effect on diabetic neuropathy is not well addressed. We demonstrated the expression of PPAR-γ in Schwann cells and vascular walls in peripheral nerve and then evaluated the effect of pioglitazone treatment for 12 weeks (10 mg/kg/day, orally) on neuropathy in streptozotocin-diabetic rats. At end, pioglitazone treatment improved nerve conduction delay in diabetic rats without affecting the expression of PPAR-γ. Diabetic rats showed suppressed protein kinase C (PKC) activity of endoneurial membrane fraction with decreased expression of PKC-α. These alterations were normalized in the treated group. Enhanced expression of phosphorylated extracellular signal-regulated kinase detected in diabetic rats was inhibited by the treatment. Increased numbers of macrophages positive for ED-1 and 8-hydroxydeoxyguanosine-positive Schwann cells in diabetic rats were also corrected by the treatment. Pioglitazone lowered blood lipid levels of diabetic rats, but blood glucose and nerve sorbitol levels were not affected by the treatment. In conclusion, our study showed that pioglitazone was beneficial for experimental diabetic neuropathy via correction of impaired PKC pathway and proinflammatory process, independent of polyol pathway. 相似文献