首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  39篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
31.
A peroxisomal C-tail-anchored type-II membrane protein, Pex26p, recruits AAA ATPase Pex1p-Pex6p complexes to peroxisomes. We herein attempted to gain mechanistic insight into Pex26p function. Pex26pΔ33-40 truncated in amino-acid residues at 33-40 abolishes the recruiting of Pex1p-Pex6p complex to peroxisomes and fails to complement the impaired phenotype of pex26 CHO cell mutant ZP167, thereby suggesting that peroxisomal localization of Pex1p and Pex6p is indispensable for the transport of matrix proteins. In in vitro transport assay using semipermeabilized CHO cells, Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. This finding is confirmed by the assay using Walker-motif mutants. Transport of Pex1p and Pex6p is temperature-dependent. In vitro binding assays with glutathione-S-transferase-fused Pex26p, Pex1p and Pex6p bind to Pex26p in a manner dependent on ATP binding but not ATP hydrolysis. These results suggest that ATP hydrolysis is required for stable localization of Pex1p to peroxisomes, but not for binding to Pex26p. Moreover, Pex1p and Pex6p are altered to a more compact conformation upon binding to ATP, as verified by limited proteolysis. Taken together, Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by the ATPase cycle.  相似文献   
32.
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting signal 2 (PTS2)-tagged enhanced green fluorescent protein (EGFP). From mutagenized TKaEG2 cells, the wild-type CHO-K1 stably expressing rat Pex2p and PTS2-EGFP, cell colonies resistant to the 9-(1(')-pyrene)nonanol/ultraviolet treatment were examined for intracellular location of PTS2-EGFP. Of six mutant cell clones two, ZPEG227 and ZPEG231, showed cytosolic PTS2-EGFP, indicative of impaired PTS2 import, and numerous PTS1-positive particles. PEX7 expression restored the impaired PTS2 import in both mutants. Cell fusion with fibroblasts from a patient with PEX7-defective rhizomelic chondrodysplasia punctata did not complement PTS2 import defect of ZPEG227 and ZPEG231, confirming that these two are pex7 mutants. Mutation analysis of PEX7 by reverse transriptase (RT)-PCR indicated that ZPEG227-allele carried an inactivating nonsense mutation, Trp158Ter. Therefore, ZPEG227 is a pex7 mutant possessing a newly identified mutation in mammalian pex7 cell lines.  相似文献   
33.
Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor–cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1‐like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast to sp1, loss‐of‐function of SPL1 led to reduced peroxisomal β‐oxidation activity, and enhanced the physiological and growth defects of pex14 and pex13 mutants. Transient co‐expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N‐terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin‐proteasome system.  相似文献   
34.
Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling   总被引:1,自引:0,他引:1  
Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, resulting in its accumulation in peroxisomes. These results suggest an essential role of the cysteine residue in the export of Pex5p. Furthermore, domain mapping indicates that N-terminal 158-amino-acid region of Pex5p-C11A, termed 158-CA, is sufficient for such dominant-negative activity by binding to membrane peroxin Pex14p via its two pentapeptide WXXXF/Y motifs. Stable expression of either Pex5p-C11A or 158-CA likewise inhibits the wild-type Pex5p import into peroxisomes, strongly suggesting that Pex5p-C11A exerts the dominant-negative effect at the translocation step via Pex14p. Taken together, these findings show that the cysteine(11) of Pex5p is indispensable for two distinct steps, its import and export. The Pex5p-C11A would be a useful tool for gaining a mechanistic insight into the matrix protein import into peroxisomes.  相似文献   
35.
We describe an unusual mechanism for organelle division. In the yeast Yarrowia lipolytica, only mature peroxisomes contain the complete set of matrix proteins. These mature peroxisomes assemble from several immature peroxisomal vesicles in a multistep pathway. The stepwise import of distinct subsets of matrix proteins into different immature intermediates along the pathway causes the redistribution of a peroxisomal protein, acyl-CoA oxidase (Aox), from the matrix to the membrane. A significant redistribution of Aox occurs only in mature peroxisomes. Inside mature peroxisomes, the membrane-bound pool of Aox interacts with Pex16p, a membrane-associated protein that negatively regulates the division of early intermediates in the pathway. This interaction inhibits the negative action of Pex16p, thereby allowing mature peroxisomes to divide.  相似文献   
36.
PEX19 has been shown to play a central role in the early steps of peroxisomal membrane synthesis. Computational database analysis of the PEX19 sequence revealed three different conserved domains: D1 (aa 1--87), D2 (aa 88--272), and D3 (aa 273--299). However, these domains have not yet been linked to specific biological functions. We elected to functionally characterize the proteins derived from two naturally occurring PEX19 splice variants: PEX19DeltaE2 lacking the N-terminal domain D1 and PEX19DeltaE8 lacking the domain D3. Both interact with peroxisomal ABC transporters (ALDP, ALDRP, PMP70) and with full-length PEX3 as shown by in vitro protein interaction studies. PEX19DeltaE8 also interacts with a PEX3 protein lacking the peroxisomal targeting region located at the N-terminus (Delta66aaPEX3), whereas PEX19DeltaE2 does not. Functional complementation studies in PEX19-deficient human fibroblasts revealed that transfection of PEX19DeltaE8-cDNA leads to restoration of both peroxisomal membranes and of functional peroxisomes, whereas transfection of PEX19DeltaE2-cDNA does not restore peroxisomal biogenesis. Human PEX19 is partly farnesylated in vitro and in vivo. The farnesylation consensus motif CLIM is located in the PEX19 domain D3. The finding that the protein derived from the splice variant lacking D3 is able to interact with several peroxisomal membrane proteins and to restore peroxisomal biogenesis challenges the previous assumption that farnesylation of PEX19 is essential for its biological functionality. The data presented demonstrate a considerable functional diversity of the proteins encoded by two PEX19 splice variants and thereby provide first experimental evidence for specific biological functions of the different predicted domains of the PEX19 protein.  相似文献   
37.
Peroxisomes are organelles that sequester certain metabolic pathways; many of these pathways generate H2O2, which can damage proteins. However, little is known about how damaged or obsolete peroxisomal proteins are degraded. We exploit developmentally timed peroxisomal content remodeling in Arabidopsis thaliana to elucidate peroxisome-associated protein degradation. Isocitrate lyase (ICL) is a peroxisomal glyoxylate cycle enzyme necessary for early seedling development. A few days after germination, photosynthesis begins and ICL is degraded. We previously found that ICL is stabilized when a peroxisome-associated ubiquitin-conjugating enzyme and its membrane anchor are both mutated, suggesting that matrix proteins might exit the peroxisome for ubiquitin-dependent cytosolic degradation. To identify additional components needed for peroxisome-associated matrix protein degradation, we mutagenized a line expressing GFP–ICL, which is degraded similarly to endogenous ICL, and identified persistent GFP-ICLfluorescence (pfl) mutants. We found three pfl mutants that were defective in PEROXIN14 (PEX14/At5g62810), which encodes a peroxisomal membrane protein that assists in importing proteins into the peroxisome matrix, indicating that proteins must enter the peroxisome for efficient degradation. One pfl mutant was missing the peroxisomal 3-ketoacyl-CoA thiolase encoded by the PEROXISOME DEFECTIVE1 (PED1/At2g33150) gene, suggesting that peroxisomal metabolism influences the rate of matrix protein degradation. Finally, one pfl mutant that displayed normal matrix protein import carried a novel lesion in PEROXIN6 (PEX6/At1g03000), which encodes a peroxisome-tethered ATPase that is involved in recycling matrix protein receptors back to the cytosol. The isolation of pex6-2 as a pfl mutant supports the hypothesis that matrix proteins can exit the peroxisome for cytosolic degradation.  相似文献   
38.
We isolated peroxisome biogenesis-defective mutants from rat PEX2-transformed Chinese hamster ovary (CHO) cells, using the 9-(1'-pyrene)nonanol/ultraviolet method. A total of 18 mutant cell clones showing cytosolic localization of catalase were isolated. By complementation group (CG) analysis by means of PEX cDNA transfection and cell fusion, cell mutants, ZP124 and ZP126, were found to belong to two novel CGs of CHO mutants. Mutants, ZP135 and ZP167, were also classified to the same CG as ZP124. Further cell fusion analysis using 12 CGs fibroblasts from patients with peroxisome deficiency disorders such as Zellweger syndrome revealed that ZP124 belonged to human CG-A, the same group as CG-VIII in the United States. ZP126 could not be classified to any of human and CHO CGs. These mutants also showed typical peroxisome assembly-defective phenotypes such as severe loss of catalase latency and impaired biogenesis of peroxisomal enzymes. Collectively, ZP124 represents CG-A, and ZP126 is in a newly identified CG distinct from the 14 mammalian CGs previously characterized.  相似文献   
39.
Atg36     
《Autophagy》2013,9(11):1680-1681
Eukaryotic cells adapt their organelle composition and abundance according to environmental conditions. Analysis of the peroxisomal membrane protein Pex3 has revealed that this protein plays a crucial role in peroxisome maintenance as it is required for peroxisome formation, segregation and breakdown. Although its function in peroxisome formation and segregation was known to involve its recruitment to the peroxisomal membrane of factors specific for these processes, the role of Pex3 in peroxisome breakdown was unclear until our recent identification of Atg36 as a novel Saccharomyces cerevisiae Pex3-interacting protein. Atg36 is recruited to peroxisomes by Pex3 and is required specifically for pexophagy. Atg36 is distinct from Atg30, the pexophagy receptor identified in Pichia pastoris. Atg36 interacts with Atg11 in vivo, and to a lesser extent with Atg8. These latter proteins link autophagic cargo receptors to the core autophagy machinery. Like other autophagic cargo receptors, Atg36 is a suicide receptor and is broken down in the vacuole together with its cargo. Unlike other cargo receptors, the interaction between Atg36 and Atg8 does not seem to be direct. Our recent findings suggest that Atg36 is a novel pexophagy receptor that may target peroxisomes for degradation via a noncanonical mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号