首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2326篇
  免费   35篇
  国内免费   81篇
  2024年   1篇
  2023年   9篇
  2022年   12篇
  2021年   27篇
  2020年   18篇
  2019年   27篇
  2018年   21篇
  2017年   22篇
  2016年   30篇
  2015年   32篇
  2014年   49篇
  2013年   288篇
  2012年   33篇
  2011年   65篇
  2010年   49篇
  2009年   80篇
  2008年   116篇
  2007年   168篇
  2006年   149篇
  2005年   139篇
  2004年   107篇
  2003年   115篇
  2002年   96篇
  2001年   80篇
  2000年   50篇
  1999年   60篇
  1998年   70篇
  1997年   62篇
  1996年   55篇
  1995年   74篇
  1994年   49篇
  1993年   33篇
  1992年   37篇
  1991年   29篇
  1990年   26篇
  1989年   36篇
  1988年   25篇
  1987年   21篇
  1986年   13篇
  1985年   13篇
  1984年   21篇
  1983年   19篇
  1982年   8篇
  1981年   5篇
  1980年   3篇
排序方式: 共有2442条查询结果,搜索用时 296 毫秒
71.
Oxidative stress and heart failure   总被引:3,自引:0,他引:3  
Various abnormalities have been implicated in the transition of hypertrophy to heart failure but the exact mechanism is still unknown. Thus heart failure subsequent to hypertrophy remains a major clinical problem. Recently, oxidative stress has been suggested to play a critical role in the pathogenesis of heart failure. Here we describe antioxidant changes as well as their significance during hypertrophy and heart failure stages. Heart hypertrophy in rats and guinea pigs, in response to pressure over-load, is associated with an increase in antioxidant reserve and a decrease in oxidative stress. Hypertrophied rat hearts show increased tolerance for different oxidative stress conditions such as those imposed by free radicals, hypoxia-reoxygenation and ischemia-reperfusion. On the other hand, heart failure under acute as well as chronic conditions is associated with reduced antioxidant reserve and increased oxidative stress. The latter may have a causal role as suggested by the protection seen with antioxidant treatment in acute as well as in chronic heart failure. It is becoming increasingly apparent that, anytime the available antioxidant reserve in the cell becomes inadequate, myocardial dysfunction is imminent.  相似文献   
72.
Preeclampsia or pregnancy-induced hypertension is a major cause of both maternal and fetal-neonatal morbidity and mortality. The deficiency of vitamin E can cause accumulation of lipid peroxidation products, which, in turn, can induce vasoconstriction. This study has examined any evidence of increased cellular lipid peroxidation and accumulation of malonydialdehyde (MDA, an end product of lipid peroxidation) in pregnancy-induced hypertension and any relationship between the elevated MDA and lower vitamin E levels with hypertension in pregnant women. EDTA-Blood was collected from pregnant women at the time of delivery. Plasma vitamin E was determined by HPLC; MDA by the thiobarbituric acid-reactivity. Subjects with diastolic blood pressure(DBP) 90 mm Hg were considered hypertensive (HT) and with <90 mm Hg normotensive (NT). Data (Mean±SE) from 49 NT and 11 HT women show that HT has significantly lower vitamin E (22±1 vs 27±1 nmole/ml, p<0.03) and elevated MDA levels (0.56±0.06 vs 0.43±0.02 nmole/ml, p<0.03) compared to NT; the ages and gestational ages of women were similar. Among all women, there was a significant positive relationship between DBP and MDA levels (r=0.27, p<0.05), and a significant negative relationship between vitamin E levels and DBP (–0.36, p<0.005), and a significant negative relationship between MDA and vitamin E levels (r=–0.27, p<0.05). Thus, HT women's plasma has significantly lower E and higher MDA levels, and DBP significantly correlates with the extent of vitamin E deficiency and increased MDA levels. This study suggests a relationship between elevated lipid peroxidation and lower vitamin E levels and hypertension in pregnancy (preeclampsia).  相似文献   
73.
Effects of magnesium and iron on lipid peroxidation in cultured hepatocytes   总被引:9,自引:0,他引:9  
In primary cultures of rat hepatocytes, the effects of extracellular Mg2+ and Fe on lipid peroxidation (LPO) as measured by means of malondialdehyde (MDA) formation were investigated.Incubation of hepatocytes at decreasing extracellular Mg2+ concentration enhanced LPO, depending on extracellular Fe. About 96% of MDA accumulated in the culture medium. Addition of desferrioxamine prevented LPO.Additionally, the formation of oxygen free radicals was determined by fluorescence reduction of cis-parinaric acid. With this method, an immediate decay of fluorescence was found after addition of Fe2+. Fluorescence reduction was completely prevented by desferrioxamine, indicating the function of extracellular Fe. This mechanism may operate additionally to the increase in intracellular Fe and intracellular formation of oxygen free radicals during Mg deficiencyin vivo.  相似文献   
74.
Carotenoids are dietary antioxidants transported with plasma lipoproteins, primarily low-density lipoprotein (LDL). In this study in vitro methods were used to increase the amounts of specific, individual carotenoids in LDL. By addition of carotenoid to isolated LDL or to serum, followed by (re)isolation of the lipoproteins, samples of LDL were enriched 4- to 150-fold with lutein, 2- to 15-fold with lycopene, or 3- to 25-fold with β-carotene. Enrichment with specific carotenoids was achieved without affecting the electrophoretic mobility of the lipoprotein, its cholesterol to protein ratio, or the levels of other cartenoids or -tocopherol. The distributions among lipoproteins of carotenoid added to serum were similar, but not identical, to the distributions of the endogenous carotenoids. In particular, for added lutein, a greater proportion was found in HDL, and for added β-carotene, more was found in very low-density lipoprotein (VLDL). We then studied the effect of enriching LDL with specific carotenoids on its susceptibility to oxidation by copper ions. Lutein, β-cryptoxanthin, lycopene, and β-carotene, the four major plasma carotenoids, and -tocopherol were destroyed before the formation of lipid peroxidation products. The rates of destruction of the individual carotenoids differed; lycopene was destroyed most rapidly and lutein most slowly. Upon oxidation of β-carotene-enriched LDL, the rates of destruction of β-carotene, lycopene, and lutein were slowed and the lag times before the initiation of lipid peroxidation increased from 19 to 65 min. Neither effect was observed in LDL enriched with lutein or lycopene. Thus, β-carotene was unique among the carotenoids studied in having a small, but significant effect on LDL oxidation in vitro.  相似文献   
75.
Abstract: Alzheimer's disease (AD) is widely held to be a disorder associated with oxidative stress due, in part, to the membrane action of amyloid β-peptide (Aβ). Aβ-associated free radicals cause lipid peroxidation, a major product of which is 4-hydroxy-2- trans -nonenal (HNE). We determined whether HNE would alter the conformation of synaptosomal membrane proteins, which might be related to the known neurotoxicity of Aβ and HNE. Electron paramagnetic resonance spectroscopy, using a protein-specific spin label, MAL-6(2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl), was used to probe conformational changes in gerbil cortical synaptosomal membrane proteins, and a lipid-specific stearic acid label, 5-nitroxide stearate, was used to probe for HNE-induced alterations in the fluidity of the bilayer domain of these membranes. Synaptosomal membranes, incubated with low concentrations of HNE, exhibited changes in protein conformation and bilayer order and motion (fluidity). The changes in protein conformation were found to be concentration- and time-dependent. Significant protein conformational changes were observed at physiologically relevant concentrations of 1–10 µ M HNE, reminiscent of similar changes in synaptosomal membrane proteins from senile plaque- and Aβ-rich AD hippocampal and inferior parietal brain regions. HNE-induced modifications in the physical state of gerbil synaptosomal membrane proteins were prevented completely by using excess glutathione ethyl ester, known to protect neurons from HNE-caused neurotoxicity. Membrane fluidity was found to increase at higher concentrations of HNE (50 µ M ). The results obtained are discussed with relevance to the hypothesis of Aβ-induced free radical-mediated lipid peroxidation, leading to subsequent HNE-induced alterations in the structure and function of key membrane proteins with consequent neurotoxicity in AD brain.  相似文献   
76.
Cotyledons excised from dark-grown seedlings of cucumber (Cucumis sativus L.) were cultured in vitro under UV radiation at different wavelengths, obtained by passage of light through cut-off filters with different transmittance properties. Growth and the synthesis of chlorophyll (Chl) in cotyledons were inhibited and malondialdehyde was accumulated upon irradiation at wavelengths below 320 nm. Exogenous application of scavengers of free radicals reversed the growth inhibition induced by UV-B. Measurement of the fluorescence of Chl a suggested that electron transfer in photosystems was affected by UV-B irradiation. On the basis of these results, the involvement is postulated of active species of oxygen in damages to thylakoid membranes and the growth inhibition that are induced by UV-B irradiation.Abbreviations Chl chlorophyll - Fm maximal fluorescence (dark) - Fm maximal fluorescence (light) - Fv variable fluorescence (dark) - Fv variable fluorescence (light) - MDA malondialdehyde - O2 Superoxide radical - PS photosystem - qN non-photochemical quenching of fluorescence - qP photochemical quenching of fluorescence - UV-BBE biologically effective UV-B radiation - WL(T = 0.5) wavelength at which 50% transmittance occurs  相似文献   
77.
Oxidative stress during exercise: Implication of antioxidant nutrients   总被引:17,自引:0,他引:17  
Research evidence has accumulated in the past decade that strenuous aerobic exercise is associated with oxidative stress and tissue damage in the body. There is indication that generation of oxygen free radicals and other reactive oxygen species may be the underlying mechanism for exercise-induced oxidative damage, but a causal relationship remains to be established. Enzymatic and nonenzymatic antioxidants play a vital role in protecting tissues from excessive oxidative damage during exercise. Depletion of each of the antioxidant systems increases the vulnerability of various tissues and cellular components to reactive oxygen species. Because acute strenuous exercise and chronic exercise training increase the consumption of various antioxidants, it is conceivable that dietary supplementation of specific antioxidants would be beneficial.  相似文献   
78.
在96孔板中进行抗脂质过氧化的微量测定   总被引:8,自引:0,他引:8  
以Fe2+/半胱氨酸诱导大鼠肝微粒体为基本模型,根据硫代巴比妥酸(TBA)反应原理,优化不同反应条件,建立了一种在96孔板上进行抗脂质过氧化测定的一步反应方法,该方法的灵敏度不低于传统的试管法,而且还具有微量、快速、简便等优点,特别适用于大规模筛选和研究抗氧化剂.此外,也可用于其它系统诱导的抗脂质过氧化的测定.  相似文献   
79.
Administration of phenobarbitone caused a marked increase in the capacity of rat brain microsomes to produce thiobarbituric acid-reactive substances in vitro. Enzymatic peroxidation of lipids was more affected than the nonenzymatic processes occurring in heat-inactivated preparations. Analysis of the phospholipid profile showed a drastic decrease in phosphatidylcholine and total phospholipid contents in the exposed animals, but about a fivefold increase in the lysophosphatidylcholine fraction. Data for in vivo incorporation of [14C]choline showed a similar pattern of high radioactivity in lysolecithin. The increase in lipid peroxidation could be related to the higher level of lysolecithin and the accompanying structural and functional changes in microsomes resulting from the neurotoxic effects of phenobarbitone.  相似文献   
80.
(5-Nitro-2-furfuryliden)amino compounds bearing triazol-4-yl, benzimidazol-l-yl, pyrazol-l-yl, triazin-4-yl or related groups (a) stimulated superoxide anion radical generated by rat liver microsomes in the presence of NADPH and oxygen; (b) inhibited the NADPH-dependent, iron-catalyzed microsomal lipid peroxidation; (c) prevented the NADPH-dependent destruction of cytochrome P-450; (d) inhibited the NADPH-dependent microsomal aniline 4-hydroxylase activity; (e) failed to inhibit either the cumenyl hydroperoxide-dependent lipid peroxidation or the aniline-4-hydroxylase activity, except for the benzimidazol-l-yl and the substituted triazol-4-yl derivatives, which produced minor inhibitions. Reducing equivalents enhanced the benzimidazol-l-yl derivative inhibition of the cumenyl hydroperoxide-induced lipid peroxidation. The ESR spectrum of the benzimidazol-l-yl derivative, reduced anaerobically by NADPH-supplemented microsomes, showed characteristic spin couplings. Compounds bearing unsaturated nitrogen heterocycles were always more active than those bearing other groups, such as nifurtimox or nitrofurazone. The energy level of the lowest unoccupied molecular orbital was in fair agreement with the capability of nitrofurans for redox-cycling and related actions. It is concluded that nitrofuran inhibition of microsomal lipid peroxidation and cytochrome P-450-catalyzed reactions was mostly due to diversion of reducing equivalents from NADPH to dioxygen. Trapping of free radicals involved in propagating lipid peroxidation might contribute to the overall effect of the benzimidazol-l-yl and substituted triazol-4-yl derivitives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号