首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16788篇
  免费   1780篇
  国内免费   2102篇
  2024年   55篇
  2023年   435篇
  2022年   414篇
  2021年   692篇
  2020年   701篇
  2019年   815篇
  2018年   686篇
  2017年   604篇
  2016年   691篇
  2015年   684篇
  2014年   732篇
  2013年   1114篇
  2012年   690篇
  2011年   656篇
  2010年   564篇
  2009年   764篇
  2008年   806篇
  2007年   843篇
  2006年   873篇
  2005年   797篇
  2004年   747篇
  2003年   689篇
  2002年   679篇
  2001年   607篇
  2000年   554篇
  1999年   457篇
  1998年   359篇
  1997年   296篇
  1996年   329篇
  1995年   267篇
  1994年   283篇
  1993年   274篇
  1992年   243篇
  1991年   180篇
  1990年   168篇
  1989年   136篇
  1988年   109篇
  1987年   96篇
  1986年   79篇
  1985年   129篇
  1984年   87篇
  1983年   53篇
  1982年   55篇
  1981年   44篇
  1980年   24篇
  1979年   20篇
  1978年   17篇
  1977年   18篇
  1976年   12篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Stockpiling of cover soil can influence vegetation development following reclamation. Cover soil, comprising the upper 15–30 cm of the surface material on sites scheduled for mining, is commonly salvaged prior to mining and used directly or stockpiled for various lengths of time until it is needed. Salvaging and stockpiling causes physical, chemical, and biological changes in cover soils. In particular, stockpiling reduces the availability and vigor of vegetative propagules and seed, and can lead to increases in the abundance of some weedy species. This study uses data from monitoring plots to assess how stockpiling of cover soil impacts plant community development on reclaimed oil sands mine sites in northern Alberta. Development of plant communities differed distinctly between directly placed and stockpiled cover soil treatments even 18 years after reclamation. Direct placement of cover soil resulted in higher percent cover, species richness, and diversity. Nonmetric multidimensional scaling and multiresponse permutation procedure revealed compositional differentiation between the treatments. Indicator species analysis showed that direct placement treatment was dominated by perennial species while grasses and annual forb species dominated sites where stockpiled soil was used. Results indicate that stockpiling leads to slower vegetation recovery while direct placement of cover soil supports more rapid succession (from ruderal and annual communities to perennial communities). In addition, direct placement may be less costly than stockpiling. However, scheduling of salvage and placement remains a challenge.  相似文献   
992.
In theory, extirpated plant species can be reintroduced and managed to restore sustainable populations. However, few reintroduced plants are known to persist for more than a few years. Our adaptive‐management case study illustrates how we restored the endangered hemiparasitic annual plant, Chloropyron maritimum subsp. maritimum (salt marsh bird's beak), to Sweetwater Marsh, San Diego Bay National Wildlife Refuge, California, United States, and used monitoring and experimentation to identify the factors limiting the reintroduced population. After extirpation in 1988, reintroduction starting that year led to a resilient, genetically diverse population in 2016 (a “boom” of approximately 14,000) that rebounded from a “bust” (62 in 2014). Multiple regressions attributed 82% of the variation in population counts to tidal amplitude, rainfall, and temperature. Populations of salt marsh bird's beak crashed when the diurnal tide range peaked during the 18.6‐year lunar nodal cycle (a rarely considered factor that periodically added approximately 12 cm to tidal ranges). We explain booms as follows: During smaller tidal amplitudes, above‐average rainfall could desalinize upper intertidal soils and stimulate salt marsh bird's beak germination. Then, moderate temperature in May favors growth to reproduction in June. In addition, salt marsh bird's beak needs a short and open canopy of native perennial plants, with roots to parasitize (not non‐native annual grass pseudohosts) and nearby upland soil for a preferred pollinator, ground‐burrowing bees. Although our reintroduced salt marsh bird's beak population is an exceptional case of persistence, this rare species‐specific environmental and biological requirement makes it vulnerable to rising sea levels and global warming.  相似文献   
993.
994.
This study is aimed to investigate the transfer of potentially toxic trace elements from soils to plants grown under the impact of Alaverdi's mining complex and assess the related dietary exposure to local residents. Contamination levels of potentially toxic trace elements (Cu, Ni, Pb, Zn, Hg, As, Cd) in soils and plants were determined and afterwards, transfer factors, estimated daily intakes, target hazard quotients, and hazard indexes were calculated.

Some trace elements (Pb, Zn, Cd) exceeded the maximum allowable levels. EDIs of Cu, Ni, Hg for the majority of studied fruits and vegetables exceeded the health-based guideline values. Meanwhile, in case of combined consumption of the studied food items, the estimated cumulative daily intakes exceeded health-based guideline values not only for the aforementioned trace elements but also for Zn in the following sequence: Zn > Hg > Ni > Cu. HI > 1 values highlighted the potential adverse health effects for local population through more than one trace element.

Detailed investigations need to be done for the overall assessment of health risks, taking into consideration not only adverse health effects posed by more than one toxic trace element but also through other exposure pathways.  相似文献   

995.
996.
Tropical forest responses are an important feedback on global change, but changes in forest composition with projected increases in CO2 and drought are highly uncertain. Here we determine shifts in the most competitive plant hydraulic strategy (the evolutionary stable strategy or ESS) from changes in CO2 and drought frequency and intensity. Hydraulic strategies were defined along a spectrum from drought avoidance to tolerance by physiology traits. Drought impacted competition more than CO2, with elevated CO2 reducing but not reversing drought‐induced shifts in the ESS towards more tolerant strategies. Trait plasticity and/or adaptation intensified these shifts by increasing the competitive ability of the drought tolerant relative to the avoidant strategies. These findings predict losses of drought avoidant evergreens from tropical forests under global change, and point to the importance of changes in precipitation during the dry season and constraints on plasticity and adaptation in xylem traits to forest responses.  相似文献   
997.
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant–pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.  相似文献   
998.
Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency‐dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency‐dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant–microbe interactions influence plant diversity.  相似文献   
999.
Success of alien plants is often attributed to high competitive ability. However, not all aliens become dominant, and not all natives are vulnerable to competitive exclusion. Here, we quantified competitive outcomes and their determinants, using response‐surface experiments, in 48 pairs of native and naturalised alien annuals that are common or rare in Germany. Overall, aliens were not more competitive than natives. However, common aliens (invasive) were, despite strong limitation by intraspecific competition, more competitive than rare natives. This is because alien species had higher intrinsic growth rates than natives, and common species had higher intrinsic growth rates than rare ones. Strength of interspecific competition was not related to status or commonness. Our work highlights the importance of including commonness in understanding invasion success. It suggests that variation among species in intrinsic growth rates is more important in competitive outcomes than inter‐ or intraspecific competition, and thus contributes to invasion success and rarity.  相似文献   
1000.
Fine root decomposition constitutes a critical yet poorly understood flux of carbon and nutrients in terrestrial ecosystems. Here, we present the first large‐scale synthesis of species trait effects on the early stages of fine root decomposition at both global and local scales. Based on decomposition rates for 279 plant species across 105 studies and 176 sites, we found that mycorrhizal association and woodiness are the best categorical traits for predicting rates of fine root decomposition. Consistent positive effects of nitrogen and phosphorus concentrations and negative effects of lignin concentration emerged on decomposition rates within sites. Similar relationships were present across sites, along with positive effects of temperature and moisture. Calcium was not consistently related to decomposition rate at either scale. While the chemical drivers of fine root decomposition parallel those of leaf decomposition, our results indicate that the best plant functional groups for predicting fine root decomposition differ from those predicting leaf decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号