首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1375篇
  免费   113篇
  国内免费   261篇
  1749篇
  2024年   5篇
  2023年   45篇
  2022年   27篇
  2021年   53篇
  2020年   47篇
  2019年   75篇
  2018年   47篇
  2017年   56篇
  2016年   51篇
  2015年   51篇
  2014年   55篇
  2013年   89篇
  2012年   57篇
  2011年   60篇
  2010年   46篇
  2009年   69篇
  2008年   79篇
  2007年   73篇
  2006年   88篇
  2005年   78篇
  2004年   71篇
  2003年   46篇
  2002年   52篇
  2001年   51篇
  2000年   39篇
  1999年   29篇
  1998年   23篇
  1997年   25篇
  1996年   31篇
  1995年   20篇
  1994年   23篇
  1993年   34篇
  1992年   13篇
  1991年   21篇
  1990年   20篇
  1989年   8篇
  1988年   5篇
  1987年   13篇
  1986年   4篇
  1985年   5篇
  1984年   15篇
  1982年   8篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1975年   4篇
  1974年   4篇
  1973年   5篇
  1972年   3篇
排序方式: 共有1749条查询结果,搜索用时 15 毫秒
91.
宣黄连特指主产安徽的短萼黄连,宣黄连系安徽历史名药,由于长期的采集,资源已经极度枯竭。本文报道了宣黄连的生态学特征和栽培研究,研究表明,野生宣黄连种群主要分布在安徽皖南山区,有林下类型和溪边类型两种,其中以林下类型为主。对宣黄连的栽培结果表明,宣黄连最适宜在皖南山区生长,应建立种质苗圃以保护和繁育宣黄连。  相似文献   
92.
Studies were carried out to understand parallel survival of two strains when cultivated as co-culture on a single carbon source in continuous cultivation. Strains used were Pseudomonas sp. strain CF600 that is reported for degradation of phenol; and HKR1 a lab strain, which was isolated from a site contaminated with phenol. In continuous cultivation Pseudomonas sp. CF600 showed an accumulation of colored intermediate, 2-hydroxy muconic semialdehyde (HMS), when fed with phenol as a sole source of carbon under dissolved oxygen limiting condition (40% saturation level). Under the same cultivation condition when it was co-cultured with strain HKR1, complete degradation of phenol was observed with no accumulation of intermediate. Different dilution rates (0.03, 0.15, and 0.30) were set in the bioreactor during cultivation. It was also observed that both the strains follow a typical cell density ratio of 1:18 as strain HKR1: Pseudomonas sp. CF600 irrespective of the dilution rates used in the study to favor degradation of phenol. Pseudomonas sp. CF600 is reported to degrade phenol via a plasmid-encoded pathway (pVI150). The enzymes for this meta-cleavage pathway are clustered on 15 genes encoded by a single operon, the dmp operon. PCR using primers from the different catabolic loci of dmp operon, demonstrated that the strain HKR1 follows a different metabolic pathway for intermediate utilization.  相似文献   
93.
Dry mill ethanol processes produce ethanol and animal feed from whole grains, where the wastewater after the distillation and separation of solid materials is called “thin stillage.” In this work, similar production of ethanol (3.5 g/L) and biomass (5 g/L) from thin stillage was obtained during batch cultivation of the edible fungus Neurospora intermedia in a 2‐m high airlift reactor and bubble column. The fungal biomass, containing 50% w/w protein and 12% w/w lipids, was rich in essential amino acids and omega‐3 and ‐6 fatty acids. In a continuous mode of fermentation, dilution rates of up to 0.2 h?1 could be applied without cell washout in the bubble column at 0.5 vvm. At 0.1 h?1, around 5 g/L of ethanol and 4 g/L of biomass containing ca. 50% w/w protein were produced. The fungus was able to assimilate saccharides in the liquid fraction as well as sugar backbones such as xylan and arabinan in the solid fraction. The inclusion of the current process could potentially lead to the production of 11 000 m3 of ethanol (5.5% improvement vs. normal industrial process) and around 6300 tons of high‐quality biomass for animal feed at a typical facility producing 200 000 m3 ethanol per year.  相似文献   
94.
In the Midwestern US, perennial rhizomatous grasses (PRGs) are considered one of the most promising vegetation types to be used as a cellulosic feedstock for renewable energy production. The potential widespread use of biomass crops for renewable energy production has sparked numerous environmental concerns, including the impacts of land‐use change on the hydrologic cycle. We predicted that total seasonal evapotranspiration (ET) would be higher for PRGs relative to maize resulting from higher leaf area and a prolonged growing season. We further predicted that, compared with maize, higher aboveground biomass associated with PRGs would offset the higher ET and increase water‐use efficiency (WUE) in the context of biomass harvests for liquid biofuel production. To test these predictions, ET was estimated during the 2007 growing season for replicated plots of Miscanthus×giganteus (miscanthus), Panicum virgatum (switchgrass), and Zea mays (maize) using a residual energy balance approach. The combination of a 25% higher mean latent heat flux (λET) and a longer growing season resulted in miscanthus having ca. 55% higher cumulative ET over the growing season compared with maize. Cumulative ET for switchgrass was also higher than maize despite similar seasonal‐mean λET. Based on total harvested aboveground biomass, WUE was ca. 50% higher for maize relative to miscanthus; however, when WUE calculated from only maize grain biomass was compared with WUE calculated from miscanthus harvested aboveground biomass, this difference disappeared. Although WUE between maize and miscanthus differed postsenescence, there were no differences in incremental WUE throughout the growing season. Despite initial predictions, aboveground biomass for switchgrass was less than maize; thus WUE was substantially lower for switchgrass than for either maize scenario. These results indicate that changes in ET due to large‐scale implementation of PRGs in the Midwestern US would likely influence local and regional hydrologic cycles differently than traditional row crops.  相似文献   
95.
96.
97.
Miscanthus spp. show excellent application prospects due to its bioenergy potential and multiple ecological services. Annual N export with biomass harvest from Miscanthus, even without fertilizer supplement, do not reduce soil N levels. The question arises regarding how Miscanthus can maintain stable soil N levels. Metagenomic strategies were used to reveal soil N-cycling-related microbiome and their functional contributions to processes of soil N-cycling based on the comparison among the bare land, cropland, 10-year Miscanthus × giganteus, and 15-year Miscanthus sacchariflorus fields. The results showed that, after long-term cropland-to-Miscanthus conversion (LCMC), 16 of 21 bacterial phyla and all the archaeal phyla exhibited significant changes. Soil microbial denitrification and nitrification functions were significantly weakened, and N fixation (NF) was significantly enhanced. The biosynthesis of amino acids, especially alanine, aspartate, and glutamate metabolism, in soil N-cycling-related microbiome was dramatically promoted. The genus Anaeromyxobacter contributed largely to the NF process after LCMC. Variations in the soil available potassium, available N, organic C, and total N contents drove a functional shift of soil microbiome from cropland to Miscanthus pattern. We conclude that Miscanthus can recruit Anaeromyxobacter communities to enhance NF benefiting its biomass sustainability and soil N balance.  相似文献   
98.
蛹虫草菌丝产虫草素液体培养条件的研究   总被引:1,自引:0,他引:1  
钟思敏  杜梅  陈往滨  张松 《菌物学报》2011,30(2):229-234
通过对蛹虫草菌丝产虫草素液体培养条件的研究,明确蛹虫草菌丝产虫草素的适宜碳源及浓度,适宜氮源及浓度,最适pH值,最适培养温度,最适转速以及最适培养时间,以便应用于虫草素的工厂化生产。结果表明,蛹虫草菌丝产虫草素的条件:适宜碳源为D-果糖,最适浓度为10g/L;适宜氮源为蛋白胨,最适浓度为15g/L;最适初始pH为7,最适培养温度为24℃,最适转速为180r/min,最适培养时间为9d,其培养液虫草素含量可达到0.537g/L。  相似文献   
99.
Acid proteinase production by the fungus Humicola lutea 120-5 in continuous culture was studied. The maximum activity of the culture broth reached 2200 U/ml at a dilution rate (D) of 0.05/h. The continuous process was carried out for 1 month without any bacterial contamination, due to low pH (3.0–3.5) during the cultivation.  相似文献   
100.
Microparticle-enhanced cultivation (MPEC) was applied as a novel method for improved biomass and product formation during cultivation of filamentous microorganisms. Exemplarily, chloroperoxidase (CPO) formation by Caldariomyces fumago was analyzed in the presence and absence of microparticles of different size. Particles of approximately 500 microm in diameter had no effect on growth morphology or productivity of CPO formation by C. fumago. In contrast particles of < or =42 microm in diameter led to the dispersion of the C. fumago mycelia up to the level of single hyphae. Under these conditions the maximum specific productivity of CPO formation was enhanced about fivefold and an accumulated CPO activity in the culture supernatant of more than 1,000 U mL(-1) was achieved after 10-12 days of cultivation. In addition, the novel cultivation method also showed a positive effect on growth characteristics of other filamentous microorganisms proven by the stimulation of single hyphae/cell formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号