首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   39篇
  国内免费   14篇
  2023年   17篇
  2022年   4篇
  2021年   16篇
  2020年   11篇
  2019年   20篇
  2018年   12篇
  2017年   16篇
  2016年   16篇
  2015年   14篇
  2014年   14篇
  2013年   16篇
  2012年   10篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   17篇
  2007年   15篇
  2006年   15篇
  2005年   24篇
  2004年   15篇
  2003年   8篇
  2002年   15篇
  2001年   10篇
  2000年   8篇
  1999年   6篇
  1998年   5篇
  1997年   11篇
  1996年   9篇
  1995年   1篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   1篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
81.
82.
83.
Abstract. The role of phosphorus (P) in leaf magnesium (Mg) concentrations and photosynthesis was investigated in field and glasshouse experiments with grapevine (Vitis vinifera L., cvs. Chenin blane. Chardonnay, and Carignane). In the field, leaves of vines growing on soil with low available P exhibited symptoms of Mg deficiency and had low P and Mg concentrations. The rate of photosynthesis for leaves of untreated control vines was approximately 0.7 nmol CO2 cm 2 s 1. When P fertilizer was applied to the soil, Mg deficiency symptoms were eliminated, and leaf P and Mg concentrations increased to above critical levels. When Mg was applied as a foliar spray, leaf Mg increased to above critical levels, but leaf P did not change significantly. In both experiments, the rate of photosynthesis increased to greater than 1.0 nmol CO2 cm 2 s 1 after nutrient applications. Thus, under low soil P conditions, leaf photosynthesis was limited by leaf Mg concentrations. In glasshouse experiments in which vines were grown with and without P for three seasons, Mg accumulated in large roots of - P vines to approximately twice the concentration found in roots of + P vines. Analysis of the xylem exudate from detopped plants showed that Mg concentration in xylem sap of + P vines was twice as great as that in - P vines. When P was supplied to - P vines, the concentration of Mg increased to the concentration of + P vines within 2 days. The results show that the translocation of Mg from roots to shoots of grapevine is dependent upon P supply to the roots and suggest that Mg translocation is more sensitive than uptake to P supply.  相似文献   
84.
85.
86.
California grasslands have been severely impacted by the invasion of nonnative annual grasses, which often limit restoration of this important ecosystem. In this study, we explored the use of mowing as a restoration tool for native perennial grasslands at the Santa Rosa Plateau Ecological Reserve in southern California. We sought to evaluate if, over time, mowing would reduce nonnative annual grass cover and benefit native species, especially the native bunchgrass Stipa pulchra. We hypothesized that repeated mowing, carefully timed to target nonnative annual grasses prior to seed maturation, would reduce nonnative seed inputs into the soil and eventually lead to diminished abundance of these species. We monitored vegetation in mowed and unmowed plots for 4 years, and conducted a seed bank study after 5 years to better understand the cumulative effects of mowing on native and nonnative seed inputs. Consistent with our hypotheses, we found that mowing successfully reduced nonnative annual grass cover and benefitted some native species, including S. pulchra. However, we also found that nonnative forb species showed progressive increases in mowed plots over time. We observed similar patterns of species composition in the soil seed bank. Together, these results suggest that mowing can be used to control nonnative annual grasses and increase the abundance of native bunchgrasses, but that this method may also have the unintended consequence of increasing nonnative forb species.  相似文献   
87.
The St and E are two important basic genomes in the perennial tribe Triticeae (Poaceae). They exist in many perennial species and are very closely related to the A, B and D genomes of bread wheat (Triticum aestivum L.). Genomic Southern hybridization and genomic in situ hybridization (GISH) were used to analyze the genomic relationships between the two genomes (St and E) and the three basic genomes (A, B and D) of T. aestivum. The semi-quantitative analysis of the Southern hybridization suggested that both St and E genomes are most closely related to the D genome, then the A genome, and relatively distant to the B genome. GISH analysis using St and E genomic DNA as probes further confirmed the conclusion. St and E are the two basic genomes of Thinopyrum ponticum (StStE^eE^bE^x) and Th. intermedium (StE^eE^b), two perennial species successfully used in wheat improvement. Therefore, this paper provides a possible answer as to why most of the spontaneous wheat-Thinopyrum translocations and substitutions usually happen in the D genome, some in the A genome and rarely in the B genome. This would develop further use of alien species for wheat improvement, especially those containing St or E in their genome components.  相似文献   
88.
Plants have to cope with changing seasons and adverse environmental conditions. Being sessile, plants have developed elaborate mechanisms for their survival that allow them to sense and adapt to the environment and reproduce successfully. A major adaptive trait for the survival of trees of temperate and boreal forests is the induction of growth cessation in anticipation of winters. In the last few years enormous progress has been made to elucidate the molecular mechanisms underlying SDs induced growth cessation in model perennial tree hybrid aspen (Populus tremula × P. tremuloides). In this review we discuss the molecular mechanism underlying photoperiodic control of growth cessation and adaptive responses.  相似文献   
89.
BACKGROUND AND AIMS: Dormancy has been extensively studied in plants which experience severe winter conditions but much less so in perennial herbaceous plants that must survive summer drought. This paper reviews the current knowledge on summer dormancy in both native and cultivated perennial temperate grasses originating from the Mediterranean Basin, and presents a unified terminology to describe this trait. SCOPE: Under severe drought, it is difficult to separate the responses by which plants avoid and tolerate dehydration from those associated with the expression of summer dormancy. Consequently, this type of endogenous (endo-) dormancy can be tested only in plants that are not subjected to moisture deficit. Summer dormancy can be defined by four criteria, one of which is considered optional: (1) reduction or cessation of leaf production and expansion; (2) senescence of mature foliage; (3) dehydration of surviving organs; and (4, optional) formation of resting organs. The proposed terminology recognizes two levels of summer dormancy: (a) complete dormancy, when cessation of growth is associated with full senescence of foliage and induced dehydration of leaf bases; and (b) incomplete dormancy, when leaf growth is partially inhibited and is associated with moderate levels of foliage senescence. Summer dormancy is expressed under increasing photoperiod and temperature. It is under hormonal control and usually associated with flowering and a reduction in metabolic activity in meristematic tissues. Dehydration tolerance and dormancy are independent phenomena and differ from the adaptations of resurrection plants. CONCLUSIONS: Summer dormancy has been correlated with superior survival after severe and repeated summer drought in a large range of perennial grasses. In the face of increasing aridity, this trait could be used in the development of cultivars that are able to meet agronomic and environmental goals. It is therefore important to have a better understanding of the genetic and environmental control of summer dormancy.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号