首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   26篇
  国内免费   49篇
  2024年   6篇
  2023年   16篇
  2022年   26篇
  2021年   25篇
  2020年   19篇
  2019年   24篇
  2018年   15篇
  2017年   19篇
  2016年   12篇
  2015年   19篇
  2014年   21篇
  2013年   26篇
  2012年   7篇
  2011年   9篇
  2010年   16篇
  2009年   11篇
  2008年   7篇
  2007年   13篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   15篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1982年   1篇
排序方式: 共有365条查询结果,搜索用时 15 毫秒
341.
342.
343.
The realization of regional synergies in industrial areas with intensive minerals processing provides a significant avenue toward sustainable resource processing. This article provides an overview of past and current synergy developments in two of Australia's major heavy industrial regions, Kwinana (Western Australia) and Gladstone (Queensland), and includes a comparative review and assessment of the drivers, barriers, and trigger events for regional synergies initiatives in both areas. Kwinana and Gladstone compare favorably with well‐known international examples in terms of the current level and maturity of industry involvement and collaboration and the commitment to further explore regional resource synergies. Kwinana stands out with regard to the number, diversity, complexity, and maturity of existing synergies. Gladstone is remarkable with regard to unusually large geographic boundaries and high dominance of one industry sector. Many diverse regional synergy opportunities still appear to exist in both industrial regions (particularly in Kwinana), mostly in three broad areas: water, energy, and inorganic by‐product reuse. To enhance the further development of new regional synergies, the Centre for Sustainable Resource Processing (CSRP), a joint initiative of Australian minerals processing companies, research providers, and government agencies, has undertaken several collaborative projects. These include research to facilitate the process of identifying and evaluating potential synergy opportunities and assistance for the industries with feasibility studies and implementation of selected synergy projects in both regions. The article also reports on the progress to date from this CSRP research.  相似文献   
344.
345.
Honeybee pollen (HBP) is a mixture of floral pollen collected by honeybees near the hive. It is characterized by a composition rich in phenolic compounds, carotenoids and vitamins that act as free radicals scavengers, conferring antioxidant and antibacterial capacity to the matrix. These bioactive properties are related to the botanical origin of the honeybee pollen. Honeybee pollen samples were collected from different geographical locations in central Chile, and their total carotenoid content, polyphenols profile by HPLC/MS/MS, DPPH radical scavenging capacity, and antimicrobial capacity against S. pyogenes, E. coli, S. aureus, and P. auriginosa strains were evaluated. Our results showed a good carotenoids content and polyphenols composition, while antioxidant capacity presented values between 0–95 % for the scavenging effect related to the botanical origin of the samples. Inhibition diameter for the different strains presented less variability among the samples, Furthermore, binary mixtures representing the two most abundant species in each HBP were prepared to assess the synergy effect of the floral pollen (FP) present in the samples. Data shows an antagonist effect was observed when assessing the carotenoid content, and a synergy effect often presents for antimicrobial and antioxidant capacity for bee pollen samples. The bioactive capacities of the honeybee pollen and their synergy effect could apply to develop new functional ingredients for the food industry.  相似文献   
346.
Natural products, including honey, total alkaloids of Sophora alopecuroides (TASA) and matrine have been used in combination with antibiotics against various pathogenic bacteria. However, there are limited data on the antibacterial activity of these natural products in combination against multidrug-resistant Pseudomonas aeruginosa strains. The in vitro activity of honey, TASA and matrine alone and in combination with antibiotics against P. aeruginosa isolates was investigated. In this study, four biofilm-producing P. aeruginosa isolates, which were resistant to multiple antibiotics, were used. These natural products were not the most effective single agent against four isolates. The fractional inhibitory concentration index method revealed the synergistic effect of matrine and TASA-honey in combination with ciprofloxacin (Cip) against all tested isolates. When these combinations were used, the resistance of isolates to Cip was decreased significantly (six to eightfold reduction in the minimum inhibitory concentration of Cip. The disk diffusion method showed that all isolates were resistant to β-lactams. Combinations of these antibiotics with TASA and matrine changed slightly the activity of either antibiotic used as a single agent. All isolates produced metallo-β-lactamase enzymes (MBL). Pretreatment isolates with Cip-matrine and Cip-TASA-honey resulted in a statistically downregulated expression of the mexA gene. These natural products can be used against overactivating MexAB-OprM but not MBL-producing P. aeruginosa isolates.  相似文献   
347.
348.
Alphy John  Matteo Rauzi 《Developmental cell》2021,56(10):1469-1483.e5
  相似文献   
349.
350.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号