首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8000篇
  免费   555篇
  国内免费   440篇
  8995篇
  2024年   13篇
  2023年   110篇
  2022年   129篇
  2021年   139篇
  2020年   175篇
  2019年   230篇
  2018年   231篇
  2017年   186篇
  2016年   199篇
  2015年   210篇
  2014年   344篇
  2013年   611篇
  2012年   294篇
  2011年   402篇
  2010年   309篇
  2009年   408篇
  2008年   446篇
  2007年   442篇
  2006年   496篇
  2005年   367篇
  2004年   334篇
  2003年   335篇
  2002年   312篇
  2001年   231篇
  2000年   175篇
  1999年   193篇
  1998年   172篇
  1997年   183篇
  1996年   118篇
  1995年   159篇
  1994年   115篇
  1993年   95篇
  1992年   105篇
  1991年   80篇
  1990年   78篇
  1989年   79篇
  1988年   57篇
  1987年   46篇
  1986年   33篇
  1985年   72篇
  1984年   89篇
  1983年   54篇
  1982年   53篇
  1981年   28篇
  1980年   16篇
  1979年   16篇
  1978年   6篇
  1977年   7篇
  1974年   5篇
  1973年   3篇
排序方式: 共有8995条查询结果,搜索用时 10 毫秒
161.
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.  相似文献   
162.
The human pancreatic cell line BxPC-3 displays two classes of binding sites with high and low affinity for VIP. The order of potency of VIP-related peptides in inhibiting either [125I]VIP or [125I]N-AcPACAP27 binding and in stimulating cAMP production was typical of the human VIP receptor. By combining affinity labeling with glycosidase treatments, we have characterized the VIP receptor as a Mr = 68,200 glycoprotein, consisting of a Mr = 39,300 polypeptide core with at least three N-linked oligosaccharide chains. In addition, our results revealed the presence of a low amount of sialic acid residues in the carbohydrate moiety of receptor.  相似文献   
163.
Antisera raised to the cardioactive peptide corazonin were used to localize immunoreactive cells in the nervous system of the American cockroach. Sera obtained after the seventh booster injection were sufficiently specific to be used for immunocytology. They recognized a subset of 10 lateral neurosecretory cells in the protocerebrum that project to, and arborize and terminate in the ipsilateral corpus cardiacum. They also reacted with bilateral neurons in each of the thoracic and abdominal neuromeres, a single dorsal unpaired median neuron in the suboesophageal ganglion, an interneuron in each optic lobe, and other neurons at the base of the optic lobe, in the tritocerebrum and deutocerebrum. The presence of corazonin in the abdominal neurons and the lateral neurosecretory cells was confirmed by HPLC fractionation of extracts of the abdominal ganglia, brains and retrocerebral complexes, followed by determination of corazonin by ELISA, which revealed in each tissue a single immunoreactive peak co-eluting with corazonin in two different HPLC systems. Antisera obtained after the first three booster injections recognized a large number of neuroendocrine cells and neurons in the brain and the abdominal nerve cord. However, the sera from the two rabbits reacted largely with different cells, indicating that the majority of this immunoreactivity was due to cross-reactivity. These results indicate that the production of highly specific antisera to some neuropeptides may require a considerable number of booster injections.  相似文献   
164.
Hydrogen peroxide at concentrations from 0.1 to 20 μM enhances phagocytosis and oxidative burst of murine peritoneal macrophages. The activation of these macrophage functions is paralled by prolonged hyperpolarization and a transient increase in cytoplasmic free calcium concentration. All the effects are dose- and time-dependent. The results obtained for H2O2 are compared with those for a natural activator, peptide N-formyl-methionyl-leucly-phenylalanine. The data demonstrate the ability of small doses of hydrogen peroxide to stimulate macrophages through the intracellular mechanisms of ion transduction.  相似文献   
165.
随着全球塑料循环体系的变革升级,提高塑料的回收利用不仅可以减少塑料在生命周期中的碳排放,还可以解决废塑料潜在的生态环境危害。文中介绍了2019年国家自然科学基金组织间国际 (地区) 合作研究项目“废塑料资源高效生物降解转化的关键科学问题与技术 (MIXed plastics biodegradation and UPcycling using microbial communities,MIX-UP)”。该项目聚焦“塑料污染”这一全球化的问题,围绕中欧双方确定的“塑料生物降解菌群”研究领域,联合中欧双方14家优势科研单位,开展实质性的重大前沿合作研究。针对废塑料生物降解中存在的解聚与重塑两个难题,项目以难降解石油基塑料 (PP、PE、PUR、PET和PS) 以及生物可降解塑料 (PLA和PHA) 的混合废塑料作为研究对象,从塑料微生物降解途径解析及关键元件的挖掘与改造、塑料高效降解混菌/多酶体系的构建与功能调控、塑料降解物的高值化炼制途径设计与利用策略3个方面展开研究。本项目将突破废塑料生物降解转化中高效降解元件挖掘、塑料降解物高值化利用的关键科学问题与技术,探索一条废塑料资源化、高值化、循环化、低碳化的新塑料循环路线,建立以“降塑再造”为核心理念的废塑料生物炼制体系,丰富我国固废资源化生物技术利用平台。项目的实施不仅有助于提升我国塑料 (生物) 循环经济的理论基础和关键技术水平,还可以推动我国与国际科研院所的多边交流与合作,促进我国在生物技术领域的创新发展,助力我国碳中和目标的实现。  相似文献   
166.
Salmonella typhimurium and Campylobacter jejuni pose significant risks to human health and poultry are a major vector for infection. Comparative in vivo infection models were performed to compare the avian host immune response to both bacterial species. Forty-five commercial broiler chickens were orally challenged with either C. jejuni or S. typhimurium whilst 60 similar control birds were mock challenged in parallel. Birds were sacrificed at 0, 6, 20 and 48 h post-infection and cloacal swabs, blood and tissue samples taken. Peripheral blood leukocytes were isolated for flow cytometric analyses and RNA was extracted for gene expression profiling. Colonisation patterns were markedly different between the two bacterial species, with systemic colonisation of Campylobacter outside the gastrointestinal tract. Salmonella infection induced significant changes in circulating heterophil and monocyte/macrophage populations, whilst Campylobacter infection had no effect on the heterophil numbers but caused a significant early increase in circulating monocytes/macrophages. Toll-like receptor 1 (TLR1) gene expression was decreased, and avian β-defensin (AvBD) gene expression (AvBD3, AvBD10 and AvBD12) was significantly increased in response to Salmonella infection (P < 0.05). In contrast, Campylobacter infection induced increased TLR21 gene expression but significantly reduced expression of seven antimicrobial peptide (AMP) genes (AvBD3, AvBD4, AvBD8, AvBD13, AvBD14, CTHL2 and CTHL3; P < 0.05). Considered together, microbiological, cellular and gene expression profiles indicate that the innate immune system responds differently to Salmonella and to Campylobacter infection. Furthermore, reduction in the expression of AMPs may play a role in the persistence of high level colonisation of the host by Campylobacter. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
167.
讨论了肽自动合成中的方法选择、偶联技术、故障排除、肽-树脂裂解及肽的纯化等主要问题及策略。  相似文献   
168.
Peptide-based therapeutics are an alternative to small molecule drugs as they offer superior specificity, lower toxicity, and easy synthesis. Here we present an approach that leverages the dramatic performance increase afforded by the recent arrival of GPU accelerated thermodynamic integration (TI). GPU TI facilitates very fast, highly accurate binding affinity optimization of peptides against therapeutic targets. We benchmarked TI predictions using published peptide binding optimization studies. Prediction of mutations involving charged side-chains was found to be less accurate than for non-charged, and use of a more complex 3-step TI protocol was found to boost accuracy in these cases. Using the 3-step protocol for non-charged side-chains either had no effect or was detrimental. We use the benchmarked pipeline to optimize a peptide binding to our recently discovered cancer target: EME1. TI calculations predict beneficial mutations using both canonical and non-canonical amino acids. We validate these predictions using fluorescence polarization and confirm that binding affinity is increased. We further demonstrate that this increase translates to a significant reduction in pancreatic cancer cell viability.  相似文献   
169.

Background

Next Generation DNA Sequencing (NGS) and genome mining of actinomycetes and other microorganisms is currently one of the most promising strategies for the discovery of novel bioactive natural products, potentially revealing novel chemistry and enzymology involved in their biosynthesis. This approach also allows rapid insights into the biosynthetic potential of microorganisms isolated from unexploited habitats and ecosystems, which in many cases may prove difficult to culture and manipulate in the laboratory. Streptomyces leeuwenhoekii (formerly Streptomyces sp. strain C34) was isolated from the hyper-arid high-altitude Atacama Desert in Chile and shown to produce novel polyketide antibiotics.

Results

Here we present the de novo sequencing of the S. leeuwenhoekii linear chromosome (8 Mb) and two extrachromosomal replicons, the circular pSLE1 (86 kb) and the linear pSLE2 (132 kb), all in single contigs, obtained by combining Pacific Biosciences SMRT (PacBio) and Illumina MiSeq technologies. We identified the biosynthetic gene clusters for chaxamycin, chaxalactin, hygromycin A and desferrioxamine E, metabolites all previously shown to be produced by this strain (J Nat Prod, 2011, 74:1965) and an additional 31 putative gene clusters for specialised metabolites. As well as gene clusters for polyketides and non-ribosomal peptides, we also identified three gene clusters encoding novel lasso-peptides.

Conclusions

The S. leeuwenhoekii genome contains 35 gene clusters apparently encoding the biosynthesis of specialised metabolites, most of them completely novel and uncharacterised. This project has served to evaluate the current state of NGS for efficient and effective genome mining of high GC actinomycetes. The PacBio technology now permits the assembly of actinomycete replicons into single contigs with >99 % accuracy. The assembled Illumina sequence permitted not only the correction of omissions found in GC homopolymers in the PacBio assembly (exacerbated by the high GC content of actinomycete DNA) but it also allowed us to obtain the sequences of the termini of the chromosome and of a linear plasmid that were not assembled by PacBio. We propose an experimental pipeline that uses the Illumina assembled contigs, in addition to just the reads, to complement the current limitations of the PacBio sequencing technology and assembly software.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1652-8) contains supplementary material, which is available to authorized users.  相似文献   
170.
In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号