首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   8篇
  国内免费   2篇
  73篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有73条查询结果,搜索用时 9 毫秒
31.
6-Keto-PGF_(1α)和TXB_2在胃粘膜适应性细胞保护中的作用   总被引:2,自引:0,他引:2  
PGI_2和TXA_2均系前列腺酸的衍生物,胃粘膜细胞可不断合成和释放,具有很强的细胞保护作用。然而,关于它们与胃蛋白酶的适应性细胞保护作用的关系,尚未见报道。本文则采用放射免疫方法,测定了胃粘膜组织 PGI_2和TXA_2的代谢物 6-Keto-PGF_(1α)和TXB_2含量在不同情况下的变化。结果表明,单纯胃蛋白酶225U或胃蛋白酶150U溶于0.1NHCl或75U溶于0.2NHCl中,提前15min灌胃,均可防止由25%NaCl高渗溶液和沸水所致的胃粘膜坏死的发生,这种保护作用呈明显的量效关系。在上述三种配方灌胃后15min,胃粘膜组织PGI_2和TXA_2含量明显升高,约为对照组的2.0—2.15和1.7—2.0倍;且以PGI_2含量的增加占优势;胃蛋白酶浓度与两者含量呈现明显的量效关系。说明胃蛋白酶作为弱刺激对高渗和物理性烫伤所致的胃粘膜损伤均有保护作用,其作用机制是通过诱发内源性PG_s 的合成和释放而实现的,这一现象对解释胃粘膜的自身耐受机制,具有重要的生理意义。  相似文献   
32.
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu, a specific inhibitor of aspartate proteinases of the pepsin type, was synthesized. Its bonding to activated 6-aminohexanoic acid-Sepharose 4B afforded an affinity support suitable for the purification of human, porcine, and chicken pepsin, human gastricsin, and bovine cathepsin D. These enzymes bind to the support over the pH range 2-5 at 0-1.5 M concentration of NaCl. A buffer at pH greater than or equal to 6, low ionic strength, and containing 20% dioxane can serve as a general desorption agent. The proteinases were isolated from the crude extracts by a single-step procedure in a high degree of purity and in yields exceeding 70%; human pepsin, however, was not separated from human gastricsin. The support does not show any binding capacity for rat plasma renin at pH 7.4 and for some cysteine endopeptidases (cathepsin B, H, and L) at pH 3-5. The cathepsin D preparations isolated by affinity chromatography on the new support and on pepstatin-Sepharose were of the same degree of purity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequences, and specific activity.  相似文献   
33.
β‐Carotene and astaxanthin are two carotenoids with powerful antioxidant properties, but the binding mechanisms of β‐carotene/astaxanthin to proteases remain unclear. In this study, the interaction of these two carotenoids with trypsin and pepsin was investigated using steady‐state and time‐resolved fluorescence measurements, synchronous fluorescence spectroscopy, UV–vis absorption spectroscopy and circular dichroism (CD) spectroscopy. The experimental results indicated that the quenching mechanisms of trypsin/pepsin by the two carotenoids are static processes. The binding constants of trypsin and pepsin with these two carotenoids are in the following order: astaxanthin–trypsin > astaxanthin–pepsin > β‐carotene–trypsin > β‐carotene–pepsin, respectively. Thermodynamic investigations revealed that the interaction between the two carotenoids and trypsin/pepsin is synergistically driven by enthalpy and entropy, and hydrophobic forces and electrostatic attraction have a significant role in the reactions. In addition, as shown by synchronous fluorescence spectroscopy, UV–vis absorption spectroscopy and CD, the two carotenoids may induce conformational and microenvironmental changes in trypsin/pepsin. The study provides an accurate and full basic data for clarifying the binding mechanisms of the two carotenoids with trypsin/pepsin and is helpful in understanding their effect on protein function and their biological activity in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
34.
All living organisms need to consume nutrients to grow, survive, and reproduce, making the successful acquisition of food resources a powerful selective pressure. However, acquiring food is only part of the challenge. While all animals spend much of their daily activity budget hunting, searching for, or otherwise procuring food, a large part of what is involved in overall nutrition occurs once the meal has been swallowed. Most nutritional components are too complex for immediate use and must be broken down into simpler compounds, which can then be absorbed by the body. This process, digestion, is catalyzed by enzymes that are either endogenous or produced by the host's microbial population .1 Research shows that the nutritional value of food is partially constrained by the digestive abilities of the microbial community present in the host's gut and that these microbes rapidly adapt to changes in diet and other environmental pressures .2 An accumulating body of evidence suggests that endogenously produced digestive enzymes also have been, and still are, common targets of natural selection, further cementing their crucial role in an organism's digestive system .3–5  相似文献   
35.
Brycon guatemalensis , a Neotropical characid fish, consumes an entirely terrestrial diet, shifting from eating insects as juveniles to fruits and leaves as adults. Juvenile and larger‐sized fish collected in the Rio Puerto Viejo at the La Selva Biological Station in Costa Rica were studied to test the hypotheses that, with ontogeny, (1) relative gut length increases, (2) pyloric caeca arrangement and number remain unchanged and (3) pepsin, trypsin and lipase activities decrease, while α‐amylase activity increases. These hypotheses were mainly supported in that larger fish had longer guts, unchanged pyloric caeca arrangement but fewer caeca, and, at both environmental and standard temperatures for the enzyme assays, lower pepsin and trypsin activities but higher α‐amylase activities than the juveniles. Only lipase, among the digestive enzymes, exhibited the unexpected outcome of either not differing significantly in activity (per g of tissue) between juveniles and larger fish or being significantly higher (per mg of protein) in larger fish. The overall results support the view that B. guatemalensis is specialized morphologically and biochemically to function first as a carnivore and then as a herbivore during its life history.  相似文献   
36.
Acidification induces a conversion of canine pepsinogens by a sequential mechanism to the active pepsins. Activation in the presence of pepstatin, which strongly inhibits the pepsins but does not prevent the first step of activation, allows the isolation of the peptide released in this first step. This peptide inhibits the milk clotting activity of canine and also porcine pepsin. Canine pepsins obtained in the absence of pepstatin were characterized by amino acid composition, molecular weight, and activity against hemoglobin and milk and compared with those of other mammalian pepsins.  相似文献   
37.
A total on-line analysis of a target protein from a plasma sample was made using a selective immunoextraction step coupled on-line to an immobilized enzymatic reactor (IMER) for the protein digestion followed by LC–MS/MS analysis. For the development of this device, cytochrome c was chosen as model protein due to its well-known sequence. An immunosorbent (IS) based on the covalent immobilization of anti-cytochrome c antibodies on a solid support was made and an immunoextraction procedure was carefully developed to assess a selective extraction of the target protein from plasma. For the first time, IS was easily coupled on-line with a laboratory-made IMER based on pepsin. The whole on-line device (IS-IMER-LC-MS/MS) allowed the quantification of cytochrome c from 8.5 pmol to 1.7 nmol in buffer medium. Finally, this device was applied to the analysis of only 85 pmol of cytochrome c from plasma with a RSD value lower than 10% (n = 3).  相似文献   
38.
The interaction of pepsin with daidzein (Dai) or genistein (Gen) was investigated using spectroscopic techniques under simulated physiological conditions. Dai and Gen can quench the fluorescence of pepsin and the quenching mechanism was a static process. The binding site number n and apparent binding constant K were measured at different temperatures. The thermodynamic parameters ΔΗ, ΔG and ΔS were calculated. The results indicated that van der Waals forces and hydrogen bond formation played major roles in the interaction of Dai or Gen with pepsin. The binding distance between pepsin and Dai or Gen was calculated according to energy transfer theory. The results of synchronous fluorescence spectra showed that the microenvironment and conformation of pepsin were changed. UV absorption and 3D fluorescence spectra showed that the binding interaction disturbed the microenvironment of amino acid residues and induced conformational changes in pepsin. Molecular docking results showed that Dai and Gen entered into the hydrophobic cavity of pepsin and two hydrogen bonds formed between Dai or Gen and pepsin. The results demonstrated that the interaction behavior between Dai and Gen with pepsin was slightly different, which denoted that the 5‐hydroxyl group of Gen, to a certain extent, had an effect on ligand binding to proteins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
39.
Comparison and multiple alignments of amino acid sequences of a representative number of related enzymes demonstrate the existence of certain positions of amino acid residues which are permanently reproducible in all members of the whole family. The use of the bioinformatic approach revealed conservative residues in each of the related enzymes and ranked amino acid conservatism for the overall enzymatic catalysis. Glycine and aspartic acid residues were shown to be the most essential for structure and catalytic activity of enzymes. Amino acid residues forming catalytic subsite of the active site of enzymes are always highly conservative. Analysis revealed that aspartic acid carboxyl group is the most frequently employed nucleophilic (in deprotonated form) and electrophilic (in protonated form) agent involved in activation of molecules by the mechanism of general base and acidic catalyses in the catalytic sites of enzymes. Glycine is a unique amino acid possessing the highest possibilities for rotation along C–C and C–N bonds of the polypeptide chain. The conservative fixation of the glycine residue in polypeptide chains of related enzymes provides a possibility for directed assembly of amino acid residues into the catalytic subsite structure. It is possible that the conservative glycines provide known conformational mobility of the protein and the active site. Methods of molecular modeling were used for analysis of structural substitutions of conservative and non-conservative glycines and their effects on geometry of catalytic site of typical hydrolases. The substitution of glycine(s) for alanine significantly altered the catalytic site structures.  相似文献   
40.
The primary structure of the so-called histoaspartic protease from Plasmodium falciparum has a very high percentage of identity and homology with the pepsin-like enzyme plasmepsin II. A homology modeling approach was used to calculate the three-dimensional structure of the enzyme. Molecular dynamics (MD) simulations were applied to find those structural properties of the histoaspartic protease that had a tendency to remain stable during all runs. The results have shown that hydrogen-bonded residues Ser37-His34-Asp214 are arranged without any strain, in a manner that resembles the active site of a serine protease, while Ser38 and Asn39 take up positions appropriate to formation of an oxyanion hole. Although there are several important differences between the enzyme and plasmepsin II, all of the structural features associated with a typical pepsin-like aspartic protease are present in the final model of the histoaspartic protease. A possibility that this enzyme may function as a serine protease is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号