首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8278篇
  免费   581篇
  国内免费   1004篇
  2024年   15篇
  2023年   125篇
  2022年   187篇
  2021年   260篇
  2020年   228篇
  2019年   273篇
  2018年   266篇
  2017年   227篇
  2016年   224篇
  2015年   248篇
  2014年   339篇
  2013年   579篇
  2012年   283篇
  2011年   335篇
  2010年   278篇
  2009年   322篇
  2008年   351篇
  2007年   417篇
  2006年   407篇
  2005年   375篇
  2004年   286篇
  2003年   383篇
  2002年   294篇
  2001年   253篇
  2000年   223篇
  1999年   239篇
  1998年   185篇
  1997年   205篇
  1996年   194篇
  1995年   176篇
  1994年   195篇
  1993年   190篇
  1992年   148篇
  1991年   150篇
  1990年   133篇
  1989年   129篇
  1988年   124篇
  1987年   101篇
  1986年   70篇
  1985年   80篇
  1984年   78篇
  1983年   39篇
  1982年   56篇
  1981年   42篇
  1980年   36篇
  1979年   24篇
  1978年   14篇
  1977年   14篇
  1976年   18篇
  1973年   14篇
排序方式: 共有9863条查询结果,搜索用时 15 毫秒
11.
Comparative two-dimensional electrophoresis showed six proteins, which were significantly produced in the root of salt-tolerant barley. These proteins were identified as stress/defense-related proteins that do not scavenge reactive oxygen species directly, suggesting that salt-tolerant barley develops not only an antioxidative system, but also physical and biochemical changes to cope with salt stress.  相似文献   
12.
13.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
14.
Combination therapies, using medicinal herbs, are broadly recommended to attenuate the chemotherapy adverse effects. Based on our previous findings considering the anti-leukaemic effects of ginger extract on acute lymphoblastic leukaemia (ALL) cells, the present study was aimed to investigate the anti-cancer role of this pharmaceutical plant on ALL mice models. Moreover, we worked towards identifying the most anti-leukaemic derivative of ginger and the mechanism through which it may exert its cytotoxic impact. In vivo experiments were performed using five groups of six C57BL/6 nude mice, and the anti-leukaemic activity of ginger extract alone or in combination with methotrexate (MTX) was examined. Results showed increased survival rate and reduced damages in mice brain and liver tissues. Subsequently, MTT assay demonstrated synergistic growth inhibitory effect of 6-shogaol (6Sh) and MTX on ALL cell lines and patients primary cells. Eventually, the molecular anti-neoplastic mechanism of 6Sh was evaluated using Bioinformatics. Flow cytometry illustrated 6Sh-mediated apoptosis in Nalm-6 cells confirmed by Western blotting and RT-PCR assays. Further analyses exhibited the generation of reactive oxygen species (ROS) through 6Sh. The current study revealed the in vivo novel anti-leukaemic role of ginger extract, promoted by MTX. Moreover, 6-shogaol was introduced as the major player of ginger cytotoxicity through inducing p53 activity and ROS generation.  相似文献   
15.
《植物生态学报》2015,39(8):816
Aims Fractal root system is phenotypic plasticity result of plant root architecture to respond to environmental heterogeneity, may reflect the growth strategy of plants to adapt to environmental conditions. Our objective was to explore the relationship between root fractal dimension and fractal abundance of fractal root system of Melica przewalskyi population in response to aspect variation in the northwest of China. Methods The study site was located in a degraded alpine grassland on the northern slope in Qilian Mountains, Gansu Province, China. Survey and sampling were carried out at 40 plots which were set up along four slope aspects transects with 20 m distance between adjacent plots. Handheld GPS was used to determine the elevation, longitude and latitude of each plot. ArcGIS was used to set up digital elevation model (DEM). Community traits were investigated and six individuals roots of M. przewalskyi were collected randomly at each plot. The samples were cleaned and divided into different organs, then scanning the root with the Win-RHIZO for measurements of fractal dimension and fractal abundance in laboratory, and their biomass were then measured after being dried at 80 °C in an oven. Important findings With the slope aspect turned from north to east, west, and south, the density, height and soil moisture content of the plant community displayed a pattern of initial decline, the height, density, root fractal abundance of M. przewalskyi increased and the root fractal dimension decreased. The root fractal dimension was negatively associated with the fractal abundance in all aspects, but the relationship varied along the slope aspects gradient; there was a highly significant negative correlation (p < 0.01) between the root fractal dimension and fractal abundance at north slope and south slope aspect, whereas the correlation only reached a significant level (p < 0.05) at the east slope aspect and west slope aspect; indicating that there is a trade-off between the root fractal dimension and fractal abundance. In addition, when the slope aspect changed from north to east, west and south, the standardized major axis (SMA) slope of the regression equation in the scaling relationships between root fractal dimension and fractal abundance increased (p < 0.05), indicating that the roots of M. przewalskyi at the droughty southern slope have less branch and more sparse in the same soil volume of root exploitation and utilization. Consequently, the resource allocation pattern on reasonable trade-off between root fractal dimension and fractal abundance in different slope aspect of M. przewalskyi, reflects the relationship between the income and the cost of construction of plant root architecture.  相似文献   
16.
Aqueous extracts of smoke, derived from Themeda triandra, a fire-climax grass, and Passerina vulgaris, a fynbos plant, stimulated the growth of primary root sections of tomato roots in suspension culture. The optimal dilution for both extracts was 1:2000. Several of the fractions obtained from TLC separation of the Themeda and the Passerina extracts significantly promoted primary root growth. The auxins naphthaleneacetic acid (NAA), indolebutyric acid (IBA) and indoleacetic acid (IAA) were found to stimulate the growth of the primary root axis, with IAA and NAA significantly promoting lateral root number. Similarly, the naturally occurring cytokinins, zeatin and its derivatives (zeatin-O-glucoside; dihydrozeatin and zeatin riboside) stimulated primary root length. Zeatin and dihydrozeatin promoted secondary root growth, but only at very low concentrations.  相似文献   
17.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
18.
19.
20.
We previously reported on the in vitro antifungal activity of a crude whole plant extract from Eucomis autumnalis against seven economically important plant pathogenic fungi. A crude extract of the bulb showed similar in vitro mycelial growth inhibition of the same plant pathogenic fungi as well as that of an eighth fungus, Mycosphaerella pinodes, the cause of black spot or Ascochyta blight, in peas. Subsequently, fourth internode leaves were removed from 4 wk old pea plants, placed on moist filter paper in Petri dishes and inoculated with an M. pinodes spore suspension before and after treatment with the extract. The control of Ascochyta blight by different concentrations of the crude E. autumnalis extract was followed in vivo by leaf symptoms over a 6 day period at 20°C in a growth cabinet. The crude extract prevented M. pinodes spore infection of the leaves when the leaves were inoculated with spores both before or after treatment with the extract, confirming complete inhibition of spore germination. The crude E. autumnalis extract showed no phytotoxic reaction on the leaves even at the highest concentration applied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号