首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2273篇
  免费   239篇
  国内免费   438篇
  2950篇
  2024年   13篇
  2023年   64篇
  2022年   54篇
  2021年   79篇
  2020年   104篇
  2019年   116篇
  2018年   89篇
  2017年   107篇
  2016年   119篇
  2015年   101篇
  2014年   103篇
  2013年   159篇
  2012年   99篇
  2011年   128篇
  2010年   99篇
  2009年   122篇
  2008年   149篇
  2007年   109篇
  2006年   102篇
  2005年   110篇
  2004年   90篇
  2003年   83篇
  2002年   79篇
  2001年   81篇
  2000年   56篇
  1999年   60篇
  1998年   58篇
  1997年   40篇
  1996年   49篇
  1995年   45篇
  1994年   35篇
  1993年   35篇
  1992年   32篇
  1991年   25篇
  1990年   24篇
  1989年   22篇
  1988年   10篇
  1987年   18篇
  1986年   21篇
  1985年   8篇
  1984年   12篇
  1983年   4篇
  1982年   10篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1977年   5篇
  1976年   5篇
  1971年   1篇
  1958年   1篇
排序方式: 共有2950条查询结果,搜索用时 0 毫秒
131.
Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near‐instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock‐on effects on speciation both within and outside regions of hybridization.  相似文献   
132.
Introgressive hybridization of Senecio hercynicus and S. ovatus (Compositae, Senecioneae) was studied in a hybrid zone on the southern slopes of Mt Brocken (Harz Mountains, Germany). A total of 415 plants representing 10 stands along an altitudinal gradient were investigated using multivariate statistical analyses of morphological characters and molecular markers (random amplified polymorphic DNA[RAPD]). Both types of traits detected pure S. hercynicus stands on the summit plateau, pure S. ovatus stands at the lowest elevations, and hybrid swarms at intermediate elevations. While morphological and molecular patterns coincided, some individuals in hybrid stands combined morphological patterns typical of S. ovatus with RAPD patterns typical of S. hercynicus, and vice versa. In general, introgression was symmetrical within stands, though one stand combined S. ovatus characters with the glandular hair typical for S. hercynicus, and two stands combined a S. hercynicus typical RAPD genotype with morphological characters shifted towards S. ovatus. Because pure stands of S. hercynicus occurred only on the summit plateau of Mt Brocken, and markers typical for S. ovatus were detectable in stands up to 1040 m a.s.l., future fusion or assimilation of the rare form, S. hercynicus, by the more widespread S. ovatus appears possible at Mt Brocken.  相似文献   
133.
Breeding is limited by energetic or environmental constraints and long-lived species sometimes skip breeding opportunities. Environmental conditions may vary considerably across the geographic and elevational range of a species and species that can respond through variation in life history strategies are likely to maintain populations at the extremes of their ranges. The decision to skip breeding enables animals to adjust life history to circumstances, and plasticity in behavior allows implementation of adjustments. Elevational patterns suggest that breeding may be limited physiologically at high elevations (e.g., greater probability of skipped breeding; resources and environmental conditions more variable) in contrast to low elevations (probability of skipping breeding lower; resources and environmental conditions more predictable). We estimated the probabilities of survival and skipped breeding in a high-elevation population of common toads and compared estimates to existing data for common toads at low elevations, and to another toad species inhabiting a similar high elevation environment. Female common toads at high elevations tend to have high probabilities of skipping breeding and survival relative to data for common toads at low elevations, and appear to use a similar strategy of skipping breeding in response to similar environmental constraints as other toads at high elevations. We provide evidence of variability in this aspect of life history for common toads. Understanding variation in life history within widely distributed species is critical. Knowing that certain life history strategies are employed on a continuum informs conservation efforts, especially as impacts of climate change are likely to be different depending on elevation.  相似文献   
134.
Saint Peter and Saint Paul's Archipelago (SPSPA), one of the smallest and most isolated island groups in the world, is situated on the Mid-Atlantic Ridge, between Brazil and the African continent. SPSPA has low species richness and high endemism; nonetheless, the diversity of fishes from deep habitats (>30 m depth) had not been previously studied in detail. Several expeditions conducted between 2009 and 2018 explored the shallow and deep reefs of SPSPA using scuba, closed-circuit rebreathers, manned submersibles, baited remote underwater stereo-videos (stereo-BRUV) and fishing between 0 and 1050 m depth. These expeditions yielded 41 new records of fishes for SPSPA: 9 in open waters, 9 in shallow waters (0–30 m), 8 in mesophotic ecosystems (30–150 m) and 15 in deeper reefs (>150 m). Combined with literature records of adult pelagic, shallow and deep-reef species, as well as larvae, the database of the fish biodiversity for SPSPA currently comprises 225 species (169 recorded as adult fishes and 79 as larvae, with 23 species found in both stages). Most of them (112) are pelagic, 86 are reef-associated species and 27 are deep-water specialists. Species accumulation curves show that the number of fish species has not yet reached an asymptote. Whereas the number of species recorded in SPSPA is similar to that in other oceanic islands in the Atlantic Ocean, the proportion of shorefishes is relatively lower, and the endemism level is the third highest in the Atlantic. Twenty-nine species are listed as threatened with extinction. Observations confirm the paucity of top predators on shallow rocky reefs of the island, despite the presence of several pelagic shark species around SPSPA. Because all of the endemic species are reef associated, it is argued that the new marine-protected areas created by the Brazilian government do not ensure the protection and recovery of SPSPA's biodiversity because they allow exploitation of the most vulnerable species around the archipelago itself. This study suggests a ban on reef fish exploitation inside an area delimited by the 1000 m isobath around the islands (where all known endemics are concentrated) as the main conservation strategy to be included in the SPSPA management plan being prepared by the Brazilian government.  相似文献   
135.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   
136.

Background

Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells.

Scope of review

This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome.

Major conclusions

Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision.

General significance

A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.  相似文献   
137.
Cryptic species are rarer than their combined, morphologically recognisable species. Each cryptic species may have its own habitat requirements and distribution, and each should be considered separately in biodiversity conservation. This investigation explores how well the two cryptic species of the wetland moss Hamatocaulis vernicosus (Mitt.) Hedenäs s.l., included in Annex II of the EU Habitat Directive, are safeguarded in existing protected sites in Sweden. Further, the northern distribution limit of the southern of the two cryptic species is explored. The distributions of the two cryptic species and their intraspecific variation are judged by the nuclear ITS1?+?2 and the two chloroplast markers rpl16 and trnL-trnF for a set of 89 specimens. The genetic differences between the two cryptic species are significant, but there are no differences between the protected and non-protected subsets within the respective species. The protected areas therefore represent these two species’ genetic variation well. The populations of both cryptic species appear stable, according to their genetic signals. One of the two cryptic species occurs almost throughout Sweden, whereas the other occurs only to the south of the southern limit of the southern boreal zone, except for two finds slightly further north in climatically mild areas.  相似文献   
138.
139.
The amyloid precursor protein (APP) and its mammalian homologs, APLP1, APLP2, have been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a cell surface‐localized pool. In the brain, all APPs are restricted to neurons; however, their precise localization at the plasma membrane remained enigmatic. Employing a variety of subcellular fractionation steps, we isolated two synaptic vesicle (SV) pools from rat and mouse brain, a pool consisting of synaptic vesicles only and a pool comprising SV docked to the presynaptic plasma membrane. Immunopurification of these two pools using a monoclonal antibody directed against the 12 membrane span synaptic vesicle protein2 (SV2) demonstrated unambiguously that APP, APLP1 and APLP2 are constituents of the active zone of murine brain but essentially absent from free synaptic vesicles. The specificity of immunodetection was confirmed by analyzing the respective knock‐out animals. The fractionation experiments further revealed that APP is accumulated in the fraction containing docked synaptic vesicles. These data present novel insights into the subsynaptic localization of APPs and are a prerequisite for unraveling the physiological role of all mature APP proteins in synaptic physiology.

  相似文献   

140.
Abstract

The deployment of high-altitude vehicles in near space with the purpose of providing Internet, communication, and other services represents the new frontier of aerospace activities. Near-space operations are attracting growing interest due to their mult-purpose nature and their anticipated high profitability. Despite such positive perceptions, near-space plans are, however, hampered by the uncertain international legal status of near space. Using the precedent of the exclusive economic zone (EEZ), this article suggests a new categorization of the near space as the exclusive utilization space (EUS) and a set of rules to manage its utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号