首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18654篇
  免费   1711篇
  国内免费   868篇
  2024年   67篇
  2023年   540篇
  2022年   761篇
  2021年   1023篇
  2020年   821篇
  2019年   986篇
  2018年   894篇
  2017年   682篇
  2016年   744篇
  2015年   901篇
  2014年   1221篇
  2013年   1578篇
  2012年   875篇
  2011年   1018篇
  2010年   725篇
  2009年   881篇
  2008年   867篇
  2007年   797篇
  2006年   749篇
  2005年   700篇
  2004年   644篇
  2003年   478篇
  2002年   453篇
  2001年   363篇
  2000年   278篇
  1999年   253篇
  1998年   253篇
  1997年   230篇
  1996年   174篇
  1995年   150篇
  1994年   197篇
  1993年   136篇
  1992年   134篇
  1991年   85篇
  1990年   93篇
  1989年   59篇
  1988年   66篇
  1987年   46篇
  1986年   44篇
  1985年   37篇
  1984年   35篇
  1983年   36篇
  1982年   35篇
  1981年   33篇
  1980年   17篇
  1979年   19篇
  1978年   13篇
  1976年   9篇
  1975年   9篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Previous studies have shown that phosphatase and tensin homolog (PTEN) are key regulators of the development of many malignant tumors and other diseases. However, its regulatory effect on coronary heart disease (CHD) has rarely been reported. Therefore, the regulatory effect of PTEN on the survival and cell death of vascular smooth muscle cells (VSMCs) in CHD mice was elucidated in this study. It was found that the protein and messenger RNA expressions of PTEN in VSMCs of 10 CHD mice were lower than those of normal mice. Then PTEN was overexpressed in VSMCs. It was suggested that the upregulation of PTEN was not conducive to the proliferation and survival of VSMCs in the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay. The flow cytometry (Annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide) and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to detect the apoptotic rate of overexpressing PTEN cells. Some data showed that the expression of PTEN could lead to increased apoptotic rate. It was shown that antiapoptotic Bcl-2 levels were decreased, but cleaved caspase-3 and proapoptotic Bax levels were promoted by SIRT6 overexpression in Western blot analysis. Moreover, PI3K/Akt expression and phosphorylation were significantly decreased in cells expressing PTEN. Recovery of PI3K expression inhibited the suppressive influence of PTEN on VSMC survival, as evidenced by the activated PI3K/Akt pathway, increased cell proliferative rate, reduced the apoptotic level, and reversed expression patterns of Bcl-2 and Bax. Therefore, the findings in this study provide a new idea on the occurrence and development mechanism of CHD and may promote the discovery of innovative therapies.  相似文献   
992.
Huntington disease is a neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) at the N-terminal of the huntingtin exon 1 protein. The detailed structure and the mechanism behind this aggregation remain unclear and it is assumed that the polyQ undergoes a conformational transition to the β-sheet structure when it aggregates. Investigating the misfolding of polyQ facilitates the determination of the molecular mechanism of aggregation and can potentially help in developing a novel approach to inhibit polyQ aggregation. Moreover, the flanking sequences of the polyQ region play a vital role in structural changes and the aggregation mechanism. We performed all-atom molecular dynamics simulations to gain structural insights into the aggregation mechanism using eight different models with glutamine repeat lengths Q27, Q27P11, Q34, Q35, Q36, Q40, Q50, and Q50P11. In the models without flanking polyPs, we noticed that the transformation of a random coil to β-sheet occurs when the number of Q increases. We also found that the flanking polyPs prevent aggregation by decreasing the probability of forming a β-sheet structure. When polyQ length increases, the 17 N-terminal flanking residues are more likely to adopt a β-sheet conformation from α-helix and coil. From our simulations, we suggest that at least 34 glutamines are required for initiating aggregation and 40 residues length is critical for the aggregation of huntingtin exon 1 protein for disease onset. This study provides structural insights into misfolding and the role of flanking sequences in huntingtin aggregation which will further help in developing therapeutic strategies for Huntington's disease.  相似文献   
993.
The neuronal cell line HT22 is an excellent model for studying Parkinson's disease. Growth differentiation factor 15 (GDF15) plays a critical role in Parkinson's disease, but the molecular mechanism involved are not well understood. We constructed the GDF15 overexpression HT22 cells and detected the effects of overexpression of GDF15 on the viability, oxygen consumption, mitochondrial membrane potential of oligomycin-treated HT22 cells. In addition, we used a high-throughput RNA-sequencing to study the lncRNA and mRNA expression profiling and obtained key lncRNAs, mRNA, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway. The expression of selected DElncRNAs was validated by quantitative real-time PCR (qRT-PCR). Our results showed that overexpression of GDF15 significantly reversed the cells viability, oxygen consumption, and mitochondrial membrane potential effect caused by oligomycin in HT22 cells. The 1093 DEmRNAs and 395 DElncRNAs in HT22 cells between GDF15-oligomycin non-intervention group and a normal control-oligomycin un-intervention group were obtained, and 394 DEmRNAs and 271 DElncRNAs in HT22 cells between GDF15-oligomycin intervention group and normal control-oligomycin intervention group were identified. Base on the GO and KEGG enrichment analysis of between GDF15-oligomycin intervention group and normal control-oligomycin intervention group, positive regulation of cell proliferation was most significantly enriched GO terms, and Cav1 was enriched in positive regulation of cell proliferation pathway. PI3K-Akt signaling pathway was one significantly enriched pathway in GDF15-oligomycin intervention group. The qRT-PCR results were consistent with RNA-sequencing, generally. GDF15 might promote mitochondrial function and proliferation of HT22 cells by regulating PI3K/Akt signaling pathway. Our study may be helpful in understanding the potential molecular mechanism of GDF15 in Parkinson's disease.  相似文献   
994.
The aim is to explore the treatment effect of coronary artery disease (CAD) and hypertension on plasma levels of renalase activity and also the possible association of renalase rs10887800 gene polymorphism with CAD and hypertension. A total of 286 patients who received coronary angiography were included in the study. Subjects were divided into four groups including (1) hypertensive with no CAD (H-Tens, n = 60); (2) CAD with hypertension (CAD + H-Tens, n = 71); (3) CAD with no hypertension (CAD, n = 61); and (4) nonhypertensive with no CAD as a control group (Con, n = 69). The plasma renalase activity was measured using the Amplex Red Monoamine Oxidase Assay Kit. Renalase rs10887800 single-nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Atorvastatin (P = 0.005), losartan (P < 0.001), and captopril (P = 0.001) were administered significantly more in case groups compared with the Con group. Significant higher and lower levels of renalase activity were observed in H-Tens and CAD patients compared with control subjects (P < 0.001 for both comparisons). Furthermore, no significant differences were obtained in the risk or protective effects of renalase rs10887800 SNP against hypertension and/or CAD in both recessive and dominant genetic models (P > 0.05). According to the findings of the present study, atorvastatin and losartan therapy assumes considerable significance in alleviating hypertension, but not CAD, by increasing the renalase activity. Furthermore, it was found that renalase rs10887800 is less likely a predisposing factor for susceptibility to hypertension and/or CAD in an Iranian southeast population.  相似文献   
995.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   
996.
High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic β-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat?/? mice the most sensitive to weight gain out of the three strains tested, followed by apoa1?/? mice. Nevertheless, only apoa1?/? mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic β-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1?/? and lcat?/? mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.  相似文献   
997.
Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.  相似文献   
998.
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt?/? mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis. Vitamin E is an antioxidant that has been clinically used to improve NAFLD pathology. Our aim was to determine whether supplementation of the diet with vitamin E could attenuate HFD-induced hepatic steatosis and its progression to NASH in Pemt?/? mice. Treatment with vitamin E (0.5?g/kg) for 3?weeks improved VLDL-TG secretion and normalized cholesterol metabolism, but failed to reduce hepatic TG content. Moreover, vitamin E treatment was able to reduce hepatic oxidative stress, inflammation and fibrosis. We also observed abnormal ceramide metabolism in Pemt?/? mice fed a HFD, with elevation of ceramides and other sphingolipids and higher expression of mRNAs for acid ceramidase (Asah1) and ceramide kinase (Cerk). Interestingly, vitamin E supplementation restored Asah1 and Cerk mRNA and sphingolipid levels. Together this study shows that vitamin E treatment efficiently prevented the progression from simple steatosis to steatohepatitis in mice lacking PEMT.  相似文献   
999.
Pediatric liver disease (PLD) is a major cause of severe morbidity and prolonged hospitalizations in children. Stratifying patients in terms of prognosis remains challenging. The limited knowledge about molecular mechanisms causing and accompanying PLD remains the main obstacle in a search for reliable prognostic biomarkers. A systematic search of MEDLINE via PubMed and Embase via OVID was conducted on studies published between August 2007 and August 2017. Molecular markers with a prognostic potential in terms of survival, need for liver transplantation or disease progression/regression were selected. In general, identified studies were single center smaller case-control studies or case series with a low level of evidence and a high risk of bias. Only 23 studies comprising 898 patients could be included, mostly focusing on biliary atresia, non-alcoholic fatty liver disease, viral hepatitis, and LT; and markers related to morphogenesis and fibrosis. Furthermore, molecular markers in metabolic pathways and inflammation shown to be relevant, however requiring further validation. Hence, further biological and clinical studies are needed to gain greater molecular insight into PLD.  相似文献   
1000.
Objectives: The association of Per3 length polymorphism with susceptibility of Alzheimer Disease (AD) was examined in the present study. Methods: This study was constructed using the case-control method and investigated the association of Per3 length polymorphism with susceptibility of AD. Genotypes of APOE and Per3 length were determined by a PCR restriction fragment length polymorphism detection method. Results: In this study, we gathered 130 unrelated AD patients and 188 controls in performing an analysis the association of Per3 length polymorphism with susceptibility of AD. In the whole sample or APOE ε4 non-carriers, an increased prevalence of five repeat homozygotes of Per3 length in AD patients had significant higher than that in controls (in the whole sample: χ2 = 7.261,= 0.0176; in APOE ε4 non-carriers: χ2 = 6.086, p = 0.030). And, among APOE ε4 carriers, an increased prevalence of five repeat homozygotes of Per3 length in AD patients had also significant higher than that in controls (χ2 = 3.893, p = 0.0319). Conclusions: Among APOE ε4 non-carriers, five repeat homozygotes of Per3 length was associated with a high susceptibility of AD among APOE ε4 carriers and non-carriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号