首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   66篇
  国内免费   60篇
  2024年   1篇
  2023年   11篇
  2022年   11篇
  2021年   14篇
  2020年   23篇
  2019年   20篇
  2018年   22篇
  2017年   19篇
  2016年   24篇
  2015年   22篇
  2014年   14篇
  2013年   30篇
  2012年   19篇
  2011年   27篇
  2010年   20篇
  2009年   21篇
  2008年   23篇
  2007年   29篇
  2006年   23篇
  2005年   21篇
  2004年   16篇
  2003年   27篇
  2002年   26篇
  2001年   9篇
  2000年   14篇
  1999年   15篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有550条查询结果,搜索用时 256 毫秒
51.
The main ecosystem services (ES) central European mountain forests provide are: protection against gravitational hazards, timber production, recreation, biodiversity conservation and carbon storage, which are all in high demand. These demands make managing mountain forests a challenging task, involving manifold synergies and conflicts between the different ES. There is therefore an urgent need for appropriate concepts and tools for support decisions in forest management and planning (FMP) to take into consideration all ES and to manage the wide variety of information types, parameters and uncertainties involved in assessing the sustainability of ES. Multi-criteria decision analysis (MCDA) provides a suitable set of methods for sustainability evaluations. In this study sustainability means the persistent fulfilment of the required ES. To address all the phases of the FMP process, MCDA and forest models should be applied together, with indicators providing the main interfaces to combine them. This paper aims to: i) review assessment approaches in order to select appropriate and widely accepted indicators for measuring and assessing the effects of different silvicultural management alternatives on forest ES, and ii) present additional standardisation approaches (value functions) for each indicator. Standardisations are necessary to make the different ES comparable and to study synergies and trade-offs between different management objectives in MCDA. The main ES in central European mountain regions are considered, with a clear focus on those indicators that are directly derivable from forest model outputs and that can refer to sustainable forest management practices. The scales considered are that of the single forest stand and of the larger forest management unit. A holistic indicator-based analysis framework for FMP in mountain forests can be built using the indicators and value functions described. The influence of different management alternatives on ES can then be evaluated, taking into consideration the instruments and information on forest management (forest models, inventory) available. All indicators are selected according to existing and approved approaches that only require data that is normally available in operational forest management. The framework can thus be an important element in developing a decision support system for FMP in mountain forests.  相似文献   
52.
Summary A field test was established in 1987 to evaluate the growth of micropropagated black cherry plantlets and control seedlings. The study also evaluated effects of two container types on initial survival and growth and of pruning on stem form and growth. At the time of field establishment, plantlets had more extensive root systems than the control seedlings. Survival and height growth were not influenced by container size. Through the first three growing seasons, seedlings were larger than micropropagated plants, but growth differences diminished in the fourth through sixth seasons. Pruning increased the length of clear stem by nearly five-fold but adversely affected diameter growth. Although all clones were from ortet trees more than 50 yr old, none showed plagiotropic growth. Six-year results showed that in a well-prepared and maintained plantation, black cherry trees derived from tissue culture can have at least 80% survival, and growth rates in excess of 1 m per year.  相似文献   
53.
54.
《植物生态学报》2018,42(12):1154
叶片碳(C)、氮(N)、磷(P)含量及其化学计量特征为植物养分状况和元素限制性提供依据。为了解不同生活型植物叶片C、N、P化学计量特征的变化,该研究测定、分析了大兴安岭地区18个泥炭地常见的3种草本植物——白毛羊胡子草(Eriophorum vaginatum)、玉簪薹草(Carex globularis)、小叶章(Deyeuxia angustifolia), 5种落叶灌木——柴桦(Betula fruticosa)、越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea)和3种常绿灌木——杜香(Ledum palustre)、地桂(Chamaedaphne calyculata)、头花杜鹃(Rhododendron capitatum)的叶片C、N、P含量。结果表明: (1)落叶和常绿灌木叶片C、N、P含量总体高于草本植物而C:N、C:P、N:P低于草本植物, 说明不同生活型植物具有不同的养分利用策略,灌木叶片C、N、P储存高于草本植物而N、P利用效率低于草本植物; (2)小叶章和头花杜鹃叶片N:P小于10, 同时其N含量小于全球植物叶片平均N含量, 相比其他植物来说更易受N限制; (3)采样地点解释了叶片C、N、P指标变异的12.8%-40.8%, 植物种类对叶片C、N、P指标变异的解释量占9.3%-25.5%; (4)草本植物C、N、P指标的地点间变异系数高于落叶和常绿灌木, 草本植物C、N、P指标对地点因素变化的响应较灌木敏感; (5)草本植物N含量种间变异系数高于落叶和常绿灌木, 落叶灌木P含量种间变异系数高于草本植物和常绿灌木, 草本植物和落叶灌木N、P吸收的种间生理分化较常绿灌木高。  相似文献   
55.

Aim

Ectomycorrhizal fungi (EMF) are a diverse and essential biota of forests that are vulnerable to species loss through reductions in late‐seral habitat. We examined how the spatial ecology of this biota, particularly distance–decay and species–area relationships, could better inform habitat thresholds for EMF conservation planning.

Location

Southeast Vancouver Island near Victoria, British Columbia, Canada.

Methods

Using a stratified sampling design, 11 plots (0.15 ha in size) were established at 0.05–17.5 km apart across 2,800 ha of mesic old‐growth Pseudotsuga menziesii var. menziesii and Tsuga heterophylla forests. EMF communities were compiled through molecular analysis of root tips and sporocarps.

Results

The EMF community was comprised of many Cortinarius, Piloderma, Russula and Tricholoma species typical of mesotrophic habitat. A total of 238 EMF species were observed, of which 86 species were detected only once. The ratio of average species richness per plot (84 taxa) to total richness was low at 0.35, and inherent stochasticity of the EMF community was estimated to be 31% community dissimilarity for species incidence. Distance decay of EMF communities was nonlinear, with an estimated slope break at 2.6 km, followed by a largely unchanging trend in β‐diversity. Accumulated species–area curves were fitted best by the cumulative Weibull sigmoid model, and the asymptote (367 species) at approx. 50 ha was consistent with nonparametric estimates of γ‐diversity (342–362 spp.).

Main conclusions

Old‐growth forests host an impressive amount of EMF diversity, and many of the Ramaria, Inocybe and Russula species are likely to be endemic to the Pacific Northwest. Both niche‐ and neutral‐based processes influenced EMF community composition, resulting in a minimum threshold of 50 ha (1.8% of the sample area) for capturing γ‐diversity. These spatial patterns will help design and evaluate conservation efforts, such as retention forestry, to sustain fully diverse EMF communities over managed landscapes.
  相似文献   
56.
57.
58.
The most carbon (C)‐dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long‐term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6–6.1 and ca. 4.9–3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland–forest swamp–peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8–1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts.  相似文献   
59.
60.
We present a decadal (1994–2004) record of carbon dioxide flux in a 160‐year‐old black spruce forest/veneer bog complex in central Manitoba, Canada. The ecosystem shifted from a source (+41 g C m−2, 1995) to a sink (−21 g C m−2, 2004) of CO2 over the decade, with an average net carbon balance near zero. Annual mean temperatures increased 1–2° during the period, consistent with the decadal trend across the North American boreal biome. We found that ecosystem carbon exchange responded strongly to air temperature, moisture status, potential evapotranspiration, and summertime solar radiation. The seasonal cycle of ecosystem respiration significantly lagged that of photosynthesis, limited by the rate of soil thaw and the slow drainage of the soil column. Factors acting over long time scales, especially water table depth, strongly influenced the carbon budget on annual time scales. Net uptake was enhanced and respiration inhibited by multiple years of rainfall in excess of evaporative demand. Contrary to expectations, we observed no correlation between longer growing seasons and net uptake, possibly because of offsetting increases in ecosystem respiration. The results indicate that the interactions between soil thaw and water table depth provide critical controls on carbon exchange in boreal forests underlain by peat, on seasonal to decadal time scales, and these factors must be simulated in terrestrial biosphere models to predict response of these regions to future climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号