首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   66篇
  国内免费   60篇
  550篇
  2024年   1篇
  2023年   11篇
  2022年   11篇
  2021年   14篇
  2020年   23篇
  2019年   20篇
  2018年   22篇
  2017年   19篇
  2016年   24篇
  2015年   22篇
  2014年   14篇
  2013年   30篇
  2012年   19篇
  2011年   27篇
  2010年   20篇
  2009年   21篇
  2008年   23篇
  2007年   29篇
  2006年   23篇
  2005年   21篇
  2004年   16篇
  2003年   27篇
  2002年   26篇
  2001年   9篇
  2000年   14篇
  1999年   15篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有550条查询结果,搜索用时 11 毫秒
21.
Short‐rotation woody cropping (SRWC) refers to silvicultural systems designed to produce woody biomass using short harvest cycles (1–15 years), intensive silvicultural techniques, high‐yielding varieties, and often coppice regeneration. Recent emphasis on alternatives to fossil fuels has spurred interest in producing SRWC on privately owned and intensively managed forests of North America. We examined potential bird and small mammal response at the stand level to conversion of existing, intensively managed forests to SRWCs using meta‐analysis of existing studies. We found 257 effect sizes for birds (243 effect sizes) and mammals (14 effect sizes) from 8 studies involving Populus spp. plantations. Diversity and abundance of bird guilds were lower on short‐rotation plantations compared with reference woodlands, while abundance of individual bird species was more variable and not consistently higher or lower on SRWC plantations. Shrub‐associated birds were more abundant on SRWC plantations, but forest‐associated and cavity‐nesting birds were less abundant. Effects on birds appeared to decrease with age of the SRWC plantation, but plantation age was also confounded with variation in the type of reference forest used for comparison. Both guilds and species of mammals were less abundant on SRWC plantations. These conclusions are tentative because none of these studies directly compared SRWC plantations to intensively managed forests. Plantations of SRWCs could contribute to overall landscape diversity in forest‐dominated landscapes by providing shrubby habitat structure for nonforest species. However, extensive conversion of mature or intensively managed forests to SRWC would likely decrease overall diversity, especially if they replace habitat types of high conservation value.  相似文献   
22.
23.
以腐熟的甘蔗渣( SB)、木薯皮( CP)、花生壳( PS)和火炭灰( BA)及园土( GS)为原料,按照不同体积比配制成9种混配基质,并以等体积比泥炭和园土混配基质为对照,对各基质的理化性质及基质中油茶( Camellia oleifera Abel)幼苗的生长状况进行比较;在对基质理化指标和油茶幼苗的壮苗指数进行线性回归分析和通径分析的基础上,采用主成分分析和综合评价法对各基质的育苗效果进行综合评价。结果表明:9种农林废弃物混配基质的容重、总孔隙度和毛管孔隙度分别为0.23~0.47 g·cm-3、60.90%~67.23%和46.53%~58.27%, pH 6.72~pH 7.14,各基质的速效氮含量、速效磷含量、速效钾含量、pH值、电导率和通气孔隙度均高于或显著高于对照,容重则显著低于对照。在不同基质中油茶幼苗的茎粗、单株叶片数、叶长、叶宽、叶绿素相对含量( SPAD)、单株茎叶干质量、单株根干质量和壮苗指数均存在一定差异,而株高和根冠比却无显著差异;其中S9混配基质也V( SB):V( CP):V( BA)=2:1:1页中幼苗的大部分生长指标较高,表现出明显的生长优势。线性回归和通径分析结果显示:除通气孔隙度外,基质的其他8个理化指标基本涵盖了影响幼苗壮苗指数的关键因素;其中,速效钾含量是对壮苗指数直接影响最大的负相关因子,而速效磷含量、电导率和总孔隙度对壮苗指数则有较大的正向直接作用,并且三者通过速效钾含量对壮苗指数产生较大的负向间接作用;此外,基质容重对壮苗指数也有一定的负向直接作用。综合评价结果显示:S9和S7混配基质也V( SB):V( BA):V( GS)=4:3:3页对油茶育苗效果的综合得分较高,分别为14.363和14.337,建议将S9混配基质作为油茶育苗的首选替代基质,S7混配基质作为备选基质。  相似文献   
24.
Different methods for predicting clonal values were explored for diameter growth (diameter at breast height (DBH)) in a radiata pine clonal forestry program: (1) clones were analyzed with a full model in which the total genetic variation was partitioned into additive, dominance, and epistasis (Clone Only—Full Model); (2) clones were analyzed together with seedling base population data (Clone Plus Seedling (CPS)), and (3) clones were analyzed with a reduced model in which the only genetic term was the total genetic variance (Clone Only—Reduced Model). DBH was assessed at age 5 for clones and between ages 4 to 13 at the seedling trials. Significant additive, dominance, and epistatic genetic effects were estimated for DBH using the CPS model. Nonadditive genetic effects for DBH were 87% as large as additive genetic effects. Narrow-sense () and broad-sense () heritability estimates for DBH using the CPS model were 0.14 ± 0.01 and 0.26 ± 0.01, respectively. Accuracy of predicted clonal values increased 4% by combining the clone and seedling data over using clonal data alone, resulting in greater confidence in the predicted genetic performance of clones. Our results indicate that exploiting nonadditive genetic effects in clonal varieties will generate greater gains than that typically obtainable from conventional family-based forestry of radiata pine. The predicted genetic gain for DBH from deployment of the top 5% of clones was 24.0%—an improvement of more than 100% over family forestry at the same selection intensity. We conclude that it is best practice to predict clonal values by incorporating seedling base population data in the clonal analysis.  相似文献   
25.
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process‐based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS‐TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water‐table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.  相似文献   
26.
Rates of organic matter mineralization in peatlands, and hence production of the greenhouse gases CH4 and CO2, are highly dependent on the distribution of oxygen in the peat. Using laboratory incubations of peat, we investigated the sensitivity of the anoxic production of CH4 and CO2 to a transient oxic period of a few weeks’ duration. Production rates during 3 successive anoxic periods were compared with rates in samples incubated in the presence of oxygen during the second period. In surface peat (5–10‐cm depth), with an initially high level of CH4 production, oxic conditions during period 2 did not result in a lower potential CH4 production rate during period 3, although production was delayed ~1 week. In permanently anoxic, deep peat (50–55‐cm depth) with a comparatively low initial production of CH4, oxic conditions during period 2 resulted in zero production of CH4 during period 3. Thus, the methanogens in surface peal—but not in deep peat—remained viable after several weeks of oxic conditions. In contrast to CH4 production, the oxic period had a negligible effect on anoxic CO2 production during period 3, in surface as well as deep peat. In both surface and deep peat, CO2 production was several times higher under oxic than under anoxic conditions. However, for the first 2 weeks of oxic conditions, CO2 production in the deep peat was very low. Still, deep peat obviously contained facultative microorganisms that, after a relatively short period, were able to maintain a considerably higher rate of organic matter mineralization under oxic than under anoxic conditions.  相似文献   
27.
The most carbon (C)‐dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long‐term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6–6.1 and ca. 4.9–3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland–forest swamp–peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8–1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts.  相似文献   
28.
Micropropagated shoots of wild cherry (Prunus avium L.) produced roots in auxin-free medium. Phloroglucinol (PG) increased the proportion of shoots that rooted, while phloretic acid reduced this response in medium with or without PG, and cancelled the promotive effect of PG. Concentration of PG also significantly affected rooting in media with and without auxin. The proportion of shoots rooting in media containing auxin, or auxin plus PG, increased with the number of successive subculture, but the proportion that rooted with PG alone was unaffected by the number of subcultures. Before the shoots had become responsive to auxin, 1 mM PG was more effective than auxin in inducing root formation.  相似文献   
29.
Reflooding formerly drained peatlands has been proposed as a means to reduce losses of organic matter and sequester soil carbon for climate change mitigation, but a renewal of high methane emissions has been reported for these ecosystems, offsetting mitigation potential. Our ability to interpret observed methane fluxes in reflooded peatlands and make predictions about future flux trends is limited due to a lack of detailed studies of methanogenic processes. In this study we investigate methanogenesis in a reflooded agricultural peatland in the Sacramento Delta, California. We use the stable‐and radio‐carbon isotopic signatures of wetland sediment methane, ecosystem‐scale eddy covariance flux observations, and laboratory incubation experiments, to identify which carbon sources and methanogenic production pathways fuel methanogenesis and how these processes are affected by vegetation and seasonality. We found that the old peat contribution to annual methane emissions was large (~30%) compared to intact wetlands, indicating a biogeochemical legacy of drainage. However, fresh carbon and the acetoclastic pathway still accounted for the majority of methanogenesis throughout the year. Although temperature sensitivities for bulk peat methanogenesis were similar between open‐water (Q10 = 2.1) and vegetated (Q10 = 2.3) soils, methane production from both fresh and old carbon sources showed pronounced seasonality in vegetated zones. We conclude that high methane emissions in restored wetlands constitute a biogeochemical trade‐off with contemporary carbon uptake, given that methane efflux is fueled primarily by fresh carbon inputs.  相似文献   
30.

Aim

Ectomycorrhizal fungi (EMF) are a diverse and essential biota of forests that are vulnerable to species loss through reductions in late‐seral habitat. We examined how the spatial ecology of this biota, particularly distance–decay and species–area relationships, could better inform habitat thresholds for EMF conservation planning.

Location

Southeast Vancouver Island near Victoria, British Columbia, Canada.

Methods

Using a stratified sampling design, 11 plots (0.15 ha in size) were established at 0.05–17.5 km apart across 2,800 ha of mesic old‐growth Pseudotsuga menziesii var. menziesii and Tsuga heterophylla forests. EMF communities were compiled through molecular analysis of root tips and sporocarps.

Results

The EMF community was comprised of many Cortinarius, Piloderma, Russula and Tricholoma species typical of mesotrophic habitat. A total of 238 EMF species were observed, of which 86 species were detected only once. The ratio of average species richness per plot (84 taxa) to total richness was low at 0.35, and inherent stochasticity of the EMF community was estimated to be 31% community dissimilarity for species incidence. Distance decay of EMF communities was nonlinear, with an estimated slope break at 2.6 km, followed by a largely unchanging trend in β‐diversity. Accumulated species–area curves were fitted best by the cumulative Weibull sigmoid model, and the asymptote (367 species) at approx. 50 ha was consistent with nonparametric estimates of γ‐diversity (342–362 spp.).

Main conclusions

Old‐growth forests host an impressive amount of EMF diversity, and many of the Ramaria, Inocybe and Russula species are likely to be endemic to the Pacific Northwest. Both niche‐ and neutral‐based processes influenced EMF community composition, resulting in a minimum threshold of 50 ha (1.8% of the sample area) for capturing γ‐diversity. These spatial patterns will help design and evaluate conservation efforts, such as retention forestry, to sustain fully diverse EMF communities over managed landscapes.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号