首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   66篇
  国内免费   60篇
  2024年   1篇
  2023年   11篇
  2022年   11篇
  2021年   14篇
  2020年   23篇
  2019年   20篇
  2018年   22篇
  2017年   19篇
  2016年   24篇
  2015年   22篇
  2014年   14篇
  2013年   30篇
  2012年   19篇
  2011年   27篇
  2010年   20篇
  2009年   21篇
  2008年   23篇
  2007年   29篇
  2006年   23篇
  2005年   21篇
  2004年   16篇
  2003年   27篇
  2002年   26篇
  2001年   9篇
  2000年   14篇
  1999年   15篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有550条查询结果,搜索用时 109 毫秒
101.
Sulfur cycling in a forested Sphagnum bog in northern Minnesota   总被引:3,自引:1,他引:2  
The mass balance and internal cycle of sulfur within a small forested,Sphagnum bog in northern Minnesota are presented here based on a 4-year record of hydrologic inputs and outputs (precipitation, throughfall, streamflow, upland runoff) and a 3-year measurement of plant growth and sulfur uptake. Concentrations and accumulation rates of inorganic and organic sulfur species were measured in porewater. The bog is a large sink for sulfur, retaining 37% of the total sulfur input. Because of the relatively large export of organic S (21% of inputs), retention efficiency for total-S (organic S + SO 4 = ; 37%) is less than that for SO 4 = (58%). There is a dynamic cycle of oxidation and reduction within the bog. Annual oxidation and recycling of S is equal to total inputs in the center of the bog. Plants receive 47% of their uptake requirement from atmospheric deposition, 5% from retranslocation from foliage, and the remainder from sulfur remineralized from peat. Mineralization is most intense in the aerobic zone above the water table. Inorganic sulfur species comprise <5% of the total sulfur burden within the peat.  相似文献   
102.
Boreal peatland ecosystems occupy about 3.5 million km2 of the earth's land surface and store between 250 and 455 Pg of carbon (C) as peat. While northern hemisphere boreal peatlands have functioned as net sinks for atmospheric C since the most recent deglaciation, natural and anthropogenic disturbances, and most importantly wildfire, may compromise peatland C sinks. To examine the effects of fire on local and regional C sink strength, we focused on a 12 000 km2 region near Wabasca, AB, Canada, where ombrotrophic Sphagnum‐dominated bogs cover 2280 km2 that burn with a fire return interval of 123±26 years. We characterized annual C accumulation along a chronosequence of 10 bog sites, spanning 1–102 years‐since‐fire (in 2002). Immediately after fire, bogs represent a net C source of 8.9±8.4 mol m−2 yr−1. At about 13 years after fire, bogs switch from net C sources to net C sinks, mainly because of recovery of the moss and shrub layers. Subsequently, black spruce biomass accumulation contributes to the net C sink, with fine root biomass accumulation peaking at 34 years after fire and aboveground biomass and coarse root accumulation peaking at 74 years after fire. The overall C sink strength peaks at 18.4 mol C m−2 yr−1 at 75 years after fire. As the tree biomass accumulation rate declines, the net C sink decreases to about 10 mol C m−2 yr−1 at 100 years‐since‐fire. We estimate that across the Wabasca study region, bogs currently represent a C sink of 14.7±5.1 Gmol yr−1. A decrease in the fire return interval to 61 years with no change in air temperature would convert the region's bogs to a net C source. An increase in nonwinter air temperature of 2 °C would decrease the regional C sink to 6.8±2.3 Gmol yr−1. Under scenarios of predicted climate change, the current C sink status of Alberta bogs is likely to diminish to the point where these peatlands become net sources of atmospheric CO2‐C.  相似文献   
103.
The possibility of carbon (C) being locked away from the atmosphere for millennia is given in hydromorphic soils. However, the water-table-dependent feedback from soil organic matter (SOM) decomposition to the climate system is less clear. At least three greenhouse gases are produced: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These gases show emission peaks at different water table positions and have different global warming potentials (GWP), for example a factor of 23 for CH4 and 296 for N2O as compared with the equivalent mass of CO2 on a 100-year time horizon. This review of available annual data on all three gases revealed that the radiative forcing effect of SOM decomposition is principally dictated by CO2 despite its low GWP. Anaerobic SOM decomposition generally has a lower potential feedback to the climatic system than aerobic SOM decomposition. Concrete values are constrained by a lack of data from tropical and subarctic regions. Furthermore, data on N2O and on plant effects are generally rare. However, there is a clear latitudinal differentiation for the GWP of soils under anaerobic conditions compared with aerobic conditions when looking at CO2 and CH4: in the tropical and temperate regions, the anaerobic GWP showed a range of 25–60% of the aerobic value, but values varied between 80% and 110% in the boreal zone. Hence, particularly in the vulnerable boreal zone, the feedback from ecosystems to climate change will highly depend on plant responses to changing water tables at elevated temperatures.  相似文献   
104.
Question Are the patterns of alien conifer (Pinaceae, Cupressaceae) invasions different between continents, and how is invasion success influenced by commercial forestry practices? Location Temperate and subtropical countries and regions (n = 60) from five continents spanning both hemispheres. Methods We used generalized linear mixed models to test how continent identity, region area and use in commercial forestry affect probabilities of Pinaceae and Cupressaceae species to escape following introduction and cumulative logit regression models to assess how these predictors affect the likelihood that a species becomes naturalized or invasive. Results Sixty Pinaceae of a global total of 232 and 26 Cupressaceae of a total of 142 species have escaped from cultivation across the study regions examined. Average numbers of both alien Pinaceae and Cupressaceae species per region were highest in Oceania, followed by Africa. Moreover, the probability of alien Cupressaceae and Pinaceae becoming naturalized or invasive was particularly high in these two continents. For both families, species used in commercial forestry have a significantly higher probability of escape than those which are only introduced for ornamental or other purposes. In the case of Pinaceae, forestry species also become naturalized or invasive more frequently than non‐forestry species, while no such effect was detectable for Cupressaceae. Conclusions We found that non‐native conifers are more likely to escape from cultivation, naturalize and turn into invasive weeds on the continents of the Southern Hemisphere. In addition to this biogeographic signal, introduction effort strongly determines the behaviour of introduced Pinaceae, and less so, Cupressaceae. A clear conflict exists between the economic benefits of conifer forestry and the risks to the environment from invasions. Future expansion of commercial forestry should address spatial planning to ecosystems vulnerable to invasion and adopt comprehensive risk assessment procedures.  相似文献   
105.
To assess the validity of previously developed risk assessment schemes in the conditions of Central Europe, we tested (1) Australian weed risk assessment scheme (WRA; Pheloung et al . 1999); (2) WRA with additional analysis by Daehler et al . (2004); and (3) decision tree scheme of Reichard and Hamilton (1997) developed in North America, on a data set of 180 alien woody species commonly planted in the Czech Republic. This list included 17 invasive species, 9 naturalized but non-invasive, 31 casual aliens, and 123 species not reported to escape from cultivation. The WRA model with additional analysis provided best results, rejecting 100% of invasive species, accepting 83.8% of non-invasive, and recommending further 13.0% for additional analysis. Overall accuracy of the WRA model with additional analysis was 85.5%, higher than that of the basic WRA scheme (67.9%) and the Reichard–Hamilton model (61.6%). Only the Reichard–Hamilton scheme accepted some invaders. The probability that an accepted species will become an invader was zero for both WRA models and 3.2% for the Reichard–Hamilton model. The probability that a rejected species would have been an invader was 77.3% for both WRA models and 24.0% for the Reichard–Hamilton model. It is concluded that the WRA model, especially with additional analysis, appears to be a promising template for building a widely applicable system for screening out invasive plant introductions.  相似文献   
106.
107.
Global and regional importance of the tropical peatland carbon pool   总被引:2,自引:0,他引:2  
Accurate inventory of tropical peatland is important in order to (a) determine the magnitude of the carbon pool; (b) estimate the scale of transfers of peat‐derived greenhouse gases to the atmosphere resulting from land use change; and (c) support carbon emissions reduction policies. We review available information on tropical peatland area and thickness and calculate peat volume and carbon content in order to determine their best estimates and ranges of variation. Our best estimate of tropical peatland area is 441 025 km2 (~11% of global peatland area) of which 247 778 km2 (56%) is in Southeast Asia. We estimate the volume of tropical peat to be 1758 Gm3 (~18–25% of global peat volume) with 1359 Gm3 in Southeast Asia (77% of all tropical peat). This new assessment reveals a larger tropical peatland carbon pool than previous estimates, with a best estimate of 88.6 Gt (range 81.7–91.9 Gt) equal to 15–19% of the global peat carbon pool. Of this, 68.5 Gt (77%) is in Southeast Asia, equal to 11–14% of global peat carbon. A single country, Indonesia, has the largest share of tropical peat carbon (57.4 Gt, 65%), followed by Malaysia (9.1 Gt, 10%). These data are used to provide revised estimates for Indonesian and Malaysian forest soil carbon pools of 77 and 15 Gt, respectively, and total forest carbon pools (biomass plus soil) of 97 and 19 Gt. Peat carbon contributes 60% to the total forest soil carbon pool in Malaysia and 74% in Indonesia. These results emphasize the prominent global and regional roles played by the tropical peat carbon pool and the importance of including this pool in national and regional assessments of terrestrial carbon stocks and the prediction of peat‐derived greenhouse gas emissions.  相似文献   
108.
Surface mining has caused significant disturbance globally, and is responsible for the loss of more than 600,000 ha of the world's largest temperate deciduous forest in the Appalachian region of the United States alone. Due to the heavy disturbance on mine lands, invasive plants have become dominant on many former coalfields, some of which were intentionally planted with exotic species. The establishment of invasive plants on these disturbed lands has often led to reductions in establishment of desirable native species. Autumn olive (Elaeagnus umbellata), an exotic nitrogen‐fixing shrub, is a problematic invasive species on reclaimed sites in Appalachia. To better understand how reclamation conditions affect autumn olive, we assessed the effects of the mine‐soil substrate and vegetation seeding on autumn olive establishment and growth. In each experiment, we also manipulated the herbaceous plant community to further examine effects on autumn olive establishment and growth. In spring 2015, we transplanted 480 1‐year‐old autumn olive seedlings across both experiments. After 2 years of growth, autumn olive performed better in weathered‐rock than in unweathered‐rock substrates; in bare‐ground plots than in vegetated plots; and in tree‐compatible (low‐competition) seeding than in more‐competitive conventional seeding. No treatment precluded autumn olive establishment. However, our results show that strategic use of beginning substrates and planting mixes can have strong inhibitory effects on invasive plants, but also that substrate and herbaceous‐plant community conditions favorable to establishment of native trees are also favorable to autumn olive.  相似文献   
109.
Sweden is one of the largest exporters of pulp and paper products in the world. It follows that huge quantities of sludge rich in carbonaceous organic material and containing heavy metals are generated. This paper carried out a comparative environmental analysis of three different technologies, which can be adopted to produce biochar and recover energy from the biosludge, using landfilling as the reference case. These three thermochemical biosludge management systems—using incineration, pyrolysis, and hydrothermal carbonization (HTC)—were modeled using life cycle assessment (LCA). Heat generated in the incineration process (System A) was considered to be for captive consumption within the kraft pulp mills. It was assumed that the biochars—pyrochar and hydrochar—produced from pyrolysis (System B) and HTC (System C), respectively, were added to the forest soils. The LCA results show that all the alternative systems considerably improve the environmental performance of biosludge management, relative to landfilling. For all systems, there are net reductions in greenhouse gas emissions (–0.89, –1.43, and –1.13 tonnes CO2‐equivalent per tonne dry matter biosludge in Systems A, B, and C, respectively). System B resulted in the lowest potential eutrophication and terrestrial ecotoxicity impacts, whereas System C had the least acidification potential. The results of this analysis show that, from an environmental point of view, biochar soil amendment as an alternative method for handling pulp and paper mill biosludge is preferable to energy recovery. However, an optimal biochar system needs to factor in the social and economic contexts as well.  相似文献   
110.
During the past century, the upland breeding areas of Hen Harriers in Ireland have been extensively afforested. There is no evidence that this species avoids breeding in heavily forested landscapes and, indeed, young commercial forests in their second rotation are often selected as nest‐sites. However, Hen Harriers have coexisted with these forested areas for only a few decades and it is possible that such landscapes are suboptimal. We examined the relationship between breeding success and habitat using a dataset spanning three years and four study areas in the south and west of Ireland. We assessed whether nest success and fledged brood size were related to habitat type, both at the nest‐site and in the surrounding landscape. Neither measure of breeding productivity was related to total forest cover or to percentage cover of closed canopy forest in the landscape. However, in a subset of areas, high cover of second‐rotation pre‐thicket (young forests planted on land from which a first rotation has already been harvested) in the surrounding landscape was associated with low levels of breeding success. This may be due to factors related to predation, disturbance or prey availability. The fact that second‐rotation pre‐thicket is a preferred habitat for nesting in Ireland suggests that Hen Harriers may be making suboptimal decisions in the landscapes available to them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号