首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   30篇
  国内免费   9篇
  346篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   10篇
  2019年   5篇
  2018年   9篇
  2017年   11篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   17篇
  2012年   13篇
  2011年   7篇
  2010年   5篇
  2009年   14篇
  2008年   15篇
  2007年   13篇
  2006年   20篇
  2005年   11篇
  2004年   9篇
  2003年   14篇
  2002年   10篇
  2001年   17篇
  2000年   12篇
  1999年   13篇
  1998年   10篇
  1997年   10篇
  1996年   9篇
  1995年   5篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
31.
Designing an effective conservation strategy requires understanding where rare species are located. Because rare species can be difficult to find, ecologists often identify other species called conservation surrogates that can help inform the distribution of rare species. Species distribution models typically rely on environmental data when predicting the occurrence of species, neglecting the effect of species' co‐occurrences and biotic interactions. Here, we present a new approach that uses Bayesian networks to improve predictions by modeling environmental co‐responses among species. For species from a European peat bog community, our approach consistently performs better than single‐species models and better than conventional multi‐species approaches that include the presence of nontarget species as additional independent variables in regression models. Our approach performs particularly well with rare species and when calibration data are limited. Furthermore, we identify a group of “predictor species” that are relatively common, insensitive to the presence of other species, and can be used to improve occurrence predictions of rare species. Predictor species are distinct from other categories of conservation surrogates such as umbrella or indicator species, which motivates focused data collection of predictor species to enhance conservation practices.  相似文献   
32.
Restoration of wet grassland communities on peat soils involves management of nutrient supply and hydrology. The concept of nutrient limitation was discussed as well as its interaction with drainage and rewetting of severely drained peat soils. Different methods of assessing nutrient limitation were compared and the type and extent of nutrient limitation were determined for several wet grassland communities. It was concluded that a full-factorial field fertilisation experiment is the most preferable method. Plant tissue analyses and soil chemical analyses were considered less suitable, although they may provide helpful additional information. Fertilisation experiments in the laboratory using sods or using test plants appear to be the proper means to study mechanisms or processes, but have a restricted predictive value for field situations. Generalising the results, it seems that many relativily undisturbed grassland plant communities on peaty soils are characterised by N limitation. Phosphate limitation for vegetation on peat soils is mainly observed in specific circumstances such as extreme calcium richness, high concentrations of Fe or as a result of drainage or long-term hay cropping. The latter two may also cause K limitation. Rewetting is regarded as a prerequisite in restoring wet grassland communities. Further restoration measures to influence nutrient availability depend on aims of the management and the individual site conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
33.
Renewable energy and greenhouse gas (GHG) reduction targets are driving an acceleration in the use of bioenergy resources. The environmental impact of national and regional development plans must be assessed in compliance with the EU Strategic Environmental Assessment (SEA) Directive (2001/42/EC). Here, we quantify the environmental impact of an Irish Government bioenergy plan to replace 30% of peat used in three peat‐burning power stations, located within the midlands region, with biomass. Four plan alternatives for supplying biomass to the power plant were considered in this study: (1) importation of palm kernel shell from south‐east Asia, (2) importation of olive cake pellets from Spain and (3) growing either willow or (4) Miscanthus in the vicinity of the power stations. The impact of each alternative on each of the environmental receptors proposed in the SEA Directive was first quantified before the data were normalized on either an Irish, regional or global scale. Positive environmental impacts were very small compared to the negative environmental impacts for each of the plan alternatives considered. Comparison of normalized indicator values confirmed that the adverse environmental consequences of each plan alternative are concentrated at the location where the biomass is produced. The analysis showed that the adverse environmental consequences of biomass importation are substantially greater than those associated with the use of willow and Miscanthus grown on former grassland. The use of olive cake pellets had a greater adverse environmental effect compared to the use of peat whereas replacement of peat with either willow or Miscanthus feedstocks led to a substantial reduction in environmental pressure. The proposed assessment framework combines the scope of SEA with the quantitative benefits of life cycle assessment and can be used to evaluate the environmental consequences of bioenergy plans.  相似文献   
34.
Several complexes of species in Sphagnum (peat mosses) originated through hybridization and allopolyploidy, suggesting that these processes have played a major evolutionary role in this genus. The Sphagnum subsecundum complex includes gametophytically haploid and diploid species in North America. Analyses of 12 microsatellite loci and sequences from two plastid DNA markers show that the evolutionary history of this group is substantially more complex than previously thought. Two taxonomic species, Sphagnum lescurii and Sphagnum inundatum, include both haploid and diploid populations. Within each ploidal level, S. lescurii and S. inundatum are not genetically differentiated. The diploid taxa show patterns of fixed heterozygosity for the microsatellite markers, consistent with an allopolyploid origin. Diploid S. lescurii is an allopolyploid between haploid S. lescurii and (haploid) S. subsecundum. Sphagnum carolinianum is an allopolyploid between haploid S. lescurii and an unknown parent. We detected homoploid hybridization between the haploids Sphagnum contortum and S. subsecundum. Finally, we report three samples of diploid Sphagnum platyphyllum (otherwise haploid) that have an allopolyploid origin involving north‐eastern haploid S. platyphyllum and an unidentified taxon. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 135–151.  相似文献   
35.
36.
Two strains of Actinobacteria, ACTY and ACTR, were isolated from cellulolytic microbial communities obtained from an ombrotrophic Sphagnum peat bog. The strains were able to degrade cellulose, the main component of plant phytomass in this ecosystem. On the basis of their phenotypic and phylogenetic characteristics, the strains were identified as members of the genus Streptomyces. The isolates developed on media without available nitrogen sources and hydrolyzed cellulose within a temperature range of 5–25°C and in the pH interval from 4.5 to 6.0; they also exhibited acetylene reduction activity. Comparative analysis of the rates of cellulose degradation by the peat-inhabiting streptomyces at 5, 15, and 25°C and at pH values of 4.5 and 6.0, with and without a source of available nitrogen in the medium, indicated that high acidity and low temperatures, typical for boreal Sphagnum peat bogs, are the main factors limiting the growth and hydrolytic activity of these bacteria.  相似文献   
37.
Polyakova  A. V.  Chernov  I. Yu.  Panikov  N. S. 《Microbiology》2001,70(5):617-623
The microbiological analysis of 78 samples taken from a high bog in Western Siberia and from a tundra wetland soil in Alaska showed the presence of 23 yeast species belonging to the genera Bullera, Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Metschnikowia, Mrakia, Pichia, Rhodotorula, Saccharomyces, Sporobolomyces, Torulaspora, and Trichosporon.Peat samples from the high bog were dominated by eurytopic anamorphic basidiomycetous species, such as Rhodotorula mucilaginosaand Sporobolomyces roseus, and by the ascomycetous yeasts Candidaspp. and Debaryomyces hansenii.These samples also contained two rare ascomycetous species (Candida paludigenaand Schizoblastosporion starkeyi-henricii), which so far have been found only in taiga wetland soils. The wetland Alaskan soil was dominated by one yeast species (Cryptococcus gilvescens), which is a typical inhabitant of tundra soils. Therefore, geographic factors may serve for a more reliable prediction of yeast diversity in soils than the physicochemical or ecotopic parameters of these soils.  相似文献   
38.
There is growing evidence of restoration success for wetland plant communities. However, little research has been done on the associated invertebrate community. We test whether restoring plant communities after peat extraction is sufficient for restoring the taxonomic and functional composition of beetle communities. We monitored taxonomic and trait‐based community metrics for beetle assemblages on restoration islands that were up to 13 years old and compared these with the adjacent “target” undisturbed peat bog. Recovery of beetle abundance, species richness, and trophic structure on the islands was remarkably rapid (i.e. within a decade) and converged on that of the undisturbed peat bog within 13 years after restoration commenced. In contrast, small, native, and poor‐dispersing taxa were persistently less abundant on the islands than in the undisturbed peat bog, causing persistent differences in species composition, even on the oldest islands. These poor‐dispersers probably need assistance to reach the islands and possibly ongoing intervention to allow them to survive there. Our findings emphasize the potential for functional trait analysis to reveal barriers to full restoration of insect community composition.  相似文献   
39.
This study reports the annual carbon balance of a drained riparian fen under two‐cut or three‐cut managements of festulolium and tall fescue. CO2 fluxes measured with closed chambers were partitioned into gross primary production (GPP) and ecosystem respiration (ER) for modelling according to environmental factors (light and temperature) and canopy reflectance (ratio vegetation index, RVI). Methodological assessments were made of (i) GPP models with or without temperature functions (Ft) to adjust GPP constraints imposed by low temperature (<10 °C) and (ii) ER models with RVI or GPP parameters as biomass proxies. The sensitivity of the models was also tested on partial datasets including only alternate measurement campaigns and on datasets only from the crop growing period. Use of Ft in GPP models effectively corrected GPP overestimation in cold periods, and this approach was used throughout. Annual fluxes obtained with ER models including RVI or GPP parameters were similar, and also annual GPP and ER fluxes obtained with full and partial datasets were similar. Annual CO2 fluxes and biomass yield were not significantly different in the crop/management combinations although the individual collars (n = 12) showed some variations in GPP (?1818 to ?2409 g CO2‐C m?2), ER (1071 to 1738 g CO2‐C m?2), net ecosystem exchange (NEE, ?669 to ?949 g CO2‐C m?2) and biomass yield (556 to 1044 g CO2‐C m?2). Net ecosystem carbon balance (NECB), as the sum of NEE and biomass carbon export, was only slightly negative to positive in all crop/management combinations. NECBs, interpreted as emission factors, tended to favour the least biomass producing systems as the best management options in relation to climate saving carbon balances. Yet, considering the down‐stream advantages of biomass for fossil fuel replacement, yield‐scaled carbon fluxes are suggested to be given additional considerations for comparison of management options in terms of atmospheric impact.  相似文献   
40.
In producing power, humans move the nutrients nitrogen (N) and phosphorus (P) from their long‐term geological and biological stocks and release or emit them in soil, water, and the atmosphere. In Finland, peat combustion is an important driver of N and P fluxes from the environment to human economy. The flows of N and P in the Finnish energy system were quantified with partial substance flow analysis, and the driving forces of emissions of nitrogen oxides (NOx) were analyzed using the ImPACT model. In the year 2000 in Finland, 140,000 tonnes of nitrogen entered the energy system, mainly in peat and hard coal. Combustion released an estimated 66,000 tonnes of N as nitrogen oxides (NOx) and nitrous oxides (N2O) and another 74,000 tonnes as elemental N2. Most of the emissions were borne in traffic. At the same time, 6,000 tonnes of P was estimated to enter the Finnish energy system, mostly in peat and wood. Ash was mainly used in earth construction and disposed in landfills; thus negligible levels of P were recycled back to nature. During the twentieth century, fuel‐borne input of N increased 20‐fold, and of P 8‐fold. In 1900–1950, the increasing use of hard coal slowly boosted N input, whereas wood fuels were the main carrier of P. Since 1970, the fluxes have been on the rise. NOx emissions leveled off in the 1980s, though, and then declined in conjunction with improvements in combustion technologies such as NOx removal (de‐NOx) technologies in energy production and catalytic converters in cars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号