首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2319篇
  免费   190篇
  国内免费   200篇
  2024年   8篇
  2023年   42篇
  2022年   38篇
  2021年   75篇
  2020年   79篇
  2019年   99篇
  2018年   100篇
  2017年   80篇
  2016年   87篇
  2015年   78篇
  2014年   94篇
  2013年   135篇
  2012年   85篇
  2011年   93篇
  2010年   74篇
  2009年   83篇
  2008年   109篇
  2007年   104篇
  2006年   109篇
  2005年   94篇
  2004年   82篇
  2003年   73篇
  2002年   73篇
  2001年   68篇
  2000年   62篇
  1999年   72篇
  1998年   47篇
  1997年   40篇
  1996年   45篇
  1995年   37篇
  1994年   41篇
  1993年   33篇
  1992年   26篇
  1991年   36篇
  1990年   24篇
  1989年   34篇
  1988年   34篇
  1987年   36篇
  1986年   20篇
  1985年   21篇
  1984年   21篇
  1983年   12篇
  1982年   17篇
  1981年   16篇
  1980年   12篇
  1979年   13篇
  1978年   10篇
  1977年   10篇
  1973年   8篇
  1972年   7篇
排序方式: 共有2709条查询结果,搜索用时 15 毫秒
91.
当外界环境发生变化后植物能够改变自身功能性状及时调整适应策略, 因此植物功能性状能够有效地反映植物对草地利用变化的响应, 然而在内蒙古草原从植物功能性状角度开展草地利用方式影响的研究略少。该研究以内蒙古典型草原大针茅(Stipa grandis)、羊草(Leymus chinensis)、糙隐子草(Cleistogenes squarrosa)和冷蒿(Artemisia frigida) 4种主要优势种为研究对象, 探讨在长期自由放牧、割草、短期围封和长期无干扰的影响下优势种植物功能性状的差异, 以期从功能性状视角, 揭示植物在受到外界干扰后的适应策略, 旨为天然草地的可持续管理提供基础数据支持和科学依据。结果表明: 1)除糙隐子草外, 在长期放牧后内蒙古典型草原优势植物植株高度、根长和植物碳氮含量降低, 这些性状的变化能够使植物个体小型化, 适口性降低, 表明植物通过逃避放牧的策略适应长期自由放牧的干扰; 在割草管理方式下, 优势种的高度和比叶面积有增加的趋势, 其中冷蒿的氮含量对割草响应最敏感, 其根、茎、叶中的氮含量均在割草样地最低; 围封和长期无干扰处理下植物的碳氮含量增加, 表明在干扰强度降低后, 植物通过功能性状的改变从资源获取策略向资源储藏策略转变。2)对优势种功能性状集合分析表明, 糙隐子草具有较低的植株高度和较高的比叶面积, 冷蒿具有较高的木质素含量和氮含量, 这些性状能够使两种植物被家畜采食量减少, 并保证其具有较强的再生能力, 这可能是糙隐子草和冷蒿耐牧的原因; 大针茅具有最高的植株高度、最大的叶片干物质含量, 以及最高的茎、叶纤维素含量, 说明大针茅是非常典型的竞争物种, 在干扰较低的条件下, 大针茅采取竞争策略对其他物种产生较大的竞争压力可能是其占优势的重要原因。  相似文献   
92.
海南岛是中国兰科植物物种丰富度较高的地区, 了解环境因子对海南岛野生兰科植物物种组成和分布格局的影响, 对于该地区野生兰科植物的保护管理和相关研究具有重要指导意义。基于海南岛野生兰科植物调查分布样方的植被类型、海拔、坡向、坡度、年平均气温、年降水量的数据, 采用典范相关分析探索了环境因子对物种组成的影响, 并计算各个环境因子对物种组成的总效应与净效应, 同时分析了6个环境因子对野生兰科植物分布格局的影响。结果表明, 所选的6个环境因子共解释了海南岛野生兰科植物组成变异的3.7%; 植被类型、海拔、年平均气温、年降水量、坡向、坡度这6个环境因子的总效应与净效应均达显著水平, 但其解释率依次减小。所选的6个环境因子对海南岛野生兰科植物的分布均有影响, 野生兰科植物在海南岛主要分布在中海拔段、5°-35°的坡度范围、阴坡与半阴坡、年平均气温较低且年降水量较高的环境, 并且于原生植被中分布最多。  相似文献   
93.
Heterogeneity in resource availability and quality can trigger spatial patterns in the expression of sexually selected traits such as body mass and weaponry. While relationships between habitat features and phenotypic quality are well established at broad geographical scales, information is poor on spatial patterns at finer, intrapopulation scales. We analyzed biometric data collected on 1965 red deer Cervus elaphus males over 20 years from a nonmigratory population living on two sides of a mountainous ridge, with substantial differences in land cover and habitat quality but similar climate and population density. We investigate spatial patterns in (i) body mass, (ii) antler mass, and (iii) antler investment. We also tested for site‐ and age‐specific patterns in allometric relationship between body mass and antler mass. Statistically significant fine‐scale spatial variations in body mass, antler mass, and, to a lesser extent, antler allocation matched spatial differences in land cover. All three traits were greater in the northern slope, characterized by higher habitat heterogeneity and greater availability of open habitats, than in the southern slope. Moreover, the allometric relationship between body mass and antler mass differed among age‐classes, in a pattern that was consistent between the two mountain slopes. Our results support the occurrence of spatial patterns in the expression of individual attributes also at a fine, intrapopulation scale. Our findings emphasize the role of environmental heterogeneity in shaping spatial variations of key life‐history traits, with potential consequences for reproductive success.  相似文献   
94.
Abstract

The process of primary growth in 2-year-old seedlings of 11 populations of Pinus halepensis Mill. is described. At the end of the first growing season one type of apical structure was observed: type-1, a tuft of primary needles placed close together, surrounding and protecting a meristematic apex.

At the end of the 2nd growing season, three types of apical structure were observed: type-1; type-2, a terminal winter bud; and type-3; a «bud» with characteristics of both type-1 and type-2.

Morphological observation along with an anatomical examination of the winter bud led to the conclusion that the definitive growth pattern in juvenile P. halepensis is monocyclic with a variable number of summer shoots. This growth pattern is reached by some P. halepensis populations in 3–4 years, by contrast, in other pine species two years are usually needed.

The populations studied differed both in growth potential (differences in number of cycles, ratio of first cycle to total growth, growth rates) and in the developmental stages of the apical meristem.

Four groups could be identified: (i) Morocco and Spain, (a limited growth, few cycles, a high ratio of 1st cycle to total growth, and growth in 2nd season almost entirely due to free growth); (ii) Algeria and Greece, (moderate to low growth, a large number of cycles, a low ratio of 1st cycle to total growth, and very early formation of apical structure with preformed primordia); (iii) Israel and Central Italy (a high growth, a large number of cycles, a medium ratio of 1st cycle to total growth, and early formation of apical structure with preformed primordia); (iiii) Greece, France and Italy, which was intermediate between group (i) and the other 2 groups.  相似文献   
95.
During meal events, a child's food can be contaminated through contacts with objects and surfaces, and/or unwashed hands that have chemical residues, increasing ingestion exposure of contaminants for the child. This is not surprising, given that very young children eat more with the hands than adults, are active, and play with toys and objects while eating. In addition, children's unwashed hands and toys are commonly inserted into their mouths during meal events, increasing exposure. By observing children during their meal events, information can be gathered on the frequency and duration of contacts between objects, foods, and hands, and the sequence of events before the hands, foods, or objects are inserted into the mouth. This article describes the process of refining a videotaping and video-translation methodology to capture micro-level activity time series (MLATS), in order to better quantify total exposure for young children as a result of their behavior during meal events and cross-contamination of foods and hands. These MLATS can be seen as detailed activity patterns that provide useful data, along with transfer coefficients and environmental concentration to estimate exposures.  相似文献   
96.
97.
The East Aegean (East Aegean Islands, Greece and West Anatolia, Turkey) is a biogeographically transitional region, where biodiversity elements from Europe and Asia join. However, affinities in the region were until recently scarcely explored. We assess biogeographical affinities in the East Aegean focusing on distribution patterns of Lamiaceae plants in Chios Island and its adjacent Çe?me–Karaburun Peninsula. Detailed in-situ record was acquired for 48 native species. These were grouped based on their habitat and geological substrate preference, their distribution was mapped in grid cells and distribution patterns were analysed in relation to species groupings. In both Chios and Çe?me–Karaburun, species follow five distribution patterns: widespread, locally widespread, locally restricted, sporadic and rare. Fifty to 62% of the species exhibit similar distribution patterns, trends in habitat and geological substrate preference in Chios and Çe?me–Karaburun, results complying with previous evidence of close biogeographical affinities of the East Aegean Islands and neighbouring Anatolia. Differences observed between the two regions may be attributed to insularity effects, human impact and the melange, an old rock matrix known for its key role in elucidating regional geodynamic evolution. Distributions of widespread and locally widespread species in Chios give evidence of density compensation and niche shifts responses, however, the actual occurrence of these phenomena in island plant populations is still to be elucidated. Overall, the species distribution patterns, particularly those of rare ones, reflect the complex geological history, palaeogeography and human influence in the Aegean region.  相似文献   
98.
Oncoproteomics is the term used to describe the application of proteomic technologies in oncology and parallels the related field of oncogenomics. It is now contributing to the development of personalized management of cancer. Proteomic technologies are used for the identification of biomarkers in cancer, which will facilitate the integration of diagnosis and therapy of cancer. Molecular diagnostics, laser capture microdissection and protein biochips are among the technologies that are having an important impact on oncoproteomics. The discovery of protein patterns developed by the US Food and Drug Administration/National Cancer Institute Clinical Proteomics Program is capable of distinguishing cancer and disease-free states with high sensitivity and specificity and will also facilitate the development of personalized therapy of cancer. Examples of application are given for breast and prostate cancer and a selection of companies and their collaborations that are developing application of proteomics to personalized treatment of cancer are discussed. Continued refinement of techniques and methods to determine the abundance and status of proteins in vivo holds great promise for the future study of normal cells and the pathology of associated neoplasms. Personalized cancer therapy is expected to be in the clinic by the end of the first decade of the 21st century.  相似文献   
99.
Savanna tree–grass interactions may be particularly sensitive to climate change. Establishment of two tree canopy dominants, post oak (Quercus stellata) and eastern redcedar (Juniperus virginiana), grown with the dominant C4 perennial grass (Schizachyrium scoparium) in southern oak savanna of the United States were evaluated under four climatic scenarios for 6 years. Tree–grass interactions were examined with and without warming (+1.5 °C) in combination with a long‐term mean rainfall treatment and a modified rainfall regime that redistributed 40% of summer rainfall to spring and fall, intensifying summer drought. The aim was to determine: (1) the relative growth response of these species, (2) potential shifts in the balance of tree–grass interactions, and (3) the trajectory of juniper encroachment into savannas, under these anticipated climatic conditions. Precipitation redistribution reduced relative growth rate (RGR) of trees grown with grass. Warming increased growth of J. virginiana and strongly reduced Q. stellata survival. Tiller numbers of S. scoparium plants were unaffected by warming, but the number of reproductive tillers was increasingly suppressed by intensified drought each year. Growth rates of J. virginiana and Q. stellata were suppressed by grass presence early, but in subsequent years were higher when grown with grass. Quercus stellata had overall reduced RGR, but enhanced survival when grown with grass, while survival of J. virginiana remained near 100% in all treatments. Once trees surpassed a threshold height of 1.1 m, both tiller number and survival of S. scoparium plants were drastically reduced by the presence of J. virginiana, but not Q. stellata. Juniperus virginiana was the only savanna dominant in which neither survival nor final aboveground mass were adversely affected by the climate scenario of warming and intensified summer drought. These responses indicate that climate warming and altered precipitation patterns will further accelerate juniper encroachment and woody thickening in a warm‐temperate oak savanna.  相似文献   
100.

Aim

Global conservation planning is often oriented around vertebrates and plants, yet most organisms are invertebrates. To explore the potential conservation implications of this bias, we assessed how well patterns of diversity for an influential group of invertebrates, the ants, correspond with those of three vertebrate groups (birds, mammals and amphibians).

Location

Global.

Methods

We compiled data on the number of genera of ants and the three vertebrate groups for 370 political regions across the world. We then compared their correlations both for overall diversity and between subsets of genera likely to be of conservation concern. We also developed generalized additive models (GAM) to identify regions where vertebrates and ants diverged in their diversity patterns.

Results

While ant and vertebrate diversity do positively correlate, the correlations are substantially weaker for the ant lineages of the greatest conservation concern. Vertebrates also notably fail to predict ant diversity in specific geographic areas, including Australia and Southeast Asia, parts of Africa and Madagascar, and south‐western China. These failures may be genuine differences in diversity patterns, or they may indicate important gaps in our knowledge of ant and vertebrate diversity.

Main conclusions

We conclude that it is currently unwise to assume that global conservation priorities based on vertebrates will conserve ants as well. We suspect that this also applies to other invertebrates.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号