首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   2篇
  国内免费   3篇
  121篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   9篇
  2008年   4篇
  2007年   15篇
  2006年   4篇
  2005年   12篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
21.
Early evolution of the MFT-like gene family in plants   总被引:1,自引:0,他引:1  
Angiosperm genes sharing a conserved phosphatidylethanolamine-binding (PEPB) domain have been shown to be involved in the control of shoot meristem identity and flowering time. The family is divided into three subfamilies, FT-like, TFL1-like and MFT-like. This study is focused on the evolution of the MFT-like clade, suggested to be ancestral to the two other clades. We report that the bryophyte Physcomitrella patens and the lycopod Selaginella moellendorfii contain four and two MFT-like genes respectively. Neither species have any FT or TFL1-like genes. Furthermore, we have identified a new subclade of MFT-like genes in Angiosperms. Quantitative expression analysis of MFT-like genes in Physcomitrella patens reveals that the expression patterns are circadian and reaches maximum in gametangia and sporophytes. Our data suggest that the occurrence FT and TFL1-like genes, is associated with the evolution of seed plants. Expression data for Physcomitrella MFT-like genes implicates an involvement in the development of reproductive tissues in the moss.  相似文献   
22.
用RT-PCR技术从小立碗藓中(Physcomitrella patens)克隆了核编码的MinE基因,命名为PpMinE,并克隆了该基因的基因组DNA。序列比对显示该基因编码的蛋白质与真细菌和绿藻叶绿体编码的MinE蛋白具有较高的相似性。pMinE-EGFP融合蛋白在烟草中的瞬时表达证明该蛋白定位于叶绿体内。在大肠杆菌中过量表达PpMinE导致细胞不正常分裂,产生无染色体的小细胞,这表明MinE的功能在进化上是保守的。在系统发育树中,PpMinE和高等陆生植物有较近的亲缘关系。在已知的陆生植物的叶绿体基因组中没有找到MinE的同源蛋白,这暗示在进化过程中MinE从叶绿体到细胞核的水平转移可能发生在陆生植物发生以前。  相似文献   
23.
Plant–animal interaction science repeatedly finds that plant species differ by orders of magnitude in the number of interactions they support. The identification of plant species that play key structural roles in plant–animal networks is a global conservation priority; however, in hyperdiverse systems such as tropical forests, empirical datasets are scarce. Plant species with longer reproductive seasons are posited to support more interactions compared to plant species with shorter reproductive seasons but this hypothesis has not been evaluated for plant species with the longest reproductive season possible at the individual plant level, the continuous reproductive phenology. Resource predictability is also associated with promoting specialization, and therefore, continuous reproduction may instead favor specialist interactions. Here, we use quantitative pollinating insect–plant networks constructed from countryside habitat of the Tropical Wet forest Life Zone and modularity analysis to test whether plant species that share the trait of continuous flowering hold core roles in mutualistic networks. With a few exceptions, most plant species sampled within our network were assigned to the role of peripheral. All but one network had significantly high modularity scores and each continuous flowering plant species was in a different module. Our work reveals that the continuous flowering plant species differed in some networks in their topological role, and that more evidence was found for the phenology to support specialized subsets of interactions. Our findings suggest that the conservation of Neotropical pollinating insect communities may require planting species from each module rather than identifying and conserving network hubs.  相似文献   
24.
For several years Physcomitrella patens Hedw. was the only land plant allowing targeted gene knockout via homologous recombination, which provides an efficient and elegant tool for the analysis of gene functions. The moss Ceratodon purpureus Hedw. was recently shown to have similar capabilities. However, extraction of high quality total DNA from both moss species — necessary for unambiguous proof of successful gene targeting events — is still a severe problem. Here, we report an improved DNA isolation protocol for moss filaments, which is fast, reliable, cheap, quick, and easy. It results in satisfying yields of DNA suitable for PCR and Southern blotting. The modified extraction procedure was additionally tested successfully for the alga Mougeotia scalaris Hass. as well as the higher plant Arabidopsis thaliana L. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 634–638. The text was submitted by the authors in English.  相似文献   
25.
Moss transcriptome and beyond   总被引:11,自引:0,他引:11  
  相似文献   
26.
Protein therapeutics represent one of the most increasing areas in the pharmaceutical industry. Plants gain acceptance as attractive alternatives for high-quality and economical protein production. However, as the majority of biopharmaceuticals are glycoproteins, plant-specific N-glycosylation has to be taken into consideration. In Physcomitrella patens (moss), glyco-engineering is an applicable tool, and the removal of immunogenic core xylose and fucose residues was realized before. Here, we present the identification of the enzymes that are responsible for terminal glycosylation (α1,4 fucosylation and β1,3 galactosylation) on complex-type N-glycans in moss. The terminal trisaccharide consisting of α1,4 fucose and β1,3 galactose linked to N-acetylglucosamine forms the so-called Lewis A epitope. This epitope is rare on moss wild-type proteins, but was shown to be enriched on complex-type N-glycans of moss-produced recombinant human erythropoietin, while unknown from the native human protein. Via gene targeting of moss galactosyltransferase and fucosyltransferase genes, we identified the gene responsible for terminal glycosylation and were able to completely abolish the formation of Lewis A residues on the recombinant biopharmaceutical.  相似文献   
27.
Physcomitrella patens has four homologs of the pseudo-response regulator involved in the circadian clock mechanism in seed plants. To gain insight into their function, Arabidopsis transgenic lines misexpressing PpPRR2 were constructed. Phenotypic analysis of the transformants with reference to clock-related gene expression and photoperiodic responses revealed that heterologous expression of the moss PpPRR2 gene modifies the intrinsic mechanism underlying the circadian clock in Arabidopsis, suggesting that PpPRR2 serves as a clock component in P. patens.  相似文献   
28.
Jasmonic acid (JA) is a plant hormone that plays important roles in a large number of processes in stress adaptation and development in flowering plants. A search of genome database indicated the existence of allene oxide synthase (AOS), an enzyme of JA biosynthesis, in Physcomitrella patens, a model plant among mosses. In this study, the presence of JA was detected in P. patens. The recombinant AOS of P. patens, which was overexpressed in Escherichia coli, showed AOS activity. These data suggest that the octadecanoid pathway also exists in P. patens.  相似文献   
29.
Wetland degradation and loss is the result of a combination of natural causes and anthropogenic activities and is a serious problem in coastal Louisiana, where approximately 80% of the total US coastal wetland loss since the 1930's has occurred. One method currently used to address this wetland loss problem is structural marsh management, which is the use of levees and water control structures to control hydroperiod. The effects of structural marsh management on two managed marshes in Southern Louisiana (Unit 4 of the Rockefeller Wildlife Refuge and the Fina LaTerre Mitigation Bank) were evaluated by comparing the soils and the dominant emergent marsh vegetation (Spartina patens) of the two managed marshes with those of two nearby unmanaged marshes. Soil redox potential, water depth, interstitial water sulfide concentration, salinity, NH4-N and elemental concentrations of Na, K, Ca, Mg, P, Fe and Zn were measured four times during 1989 which was a drawdown year. Net and total CO2 exchange rate, primary productivity, leaf area, stem density, and live, dead and total aboveground biomass were also measured. The managed marsh at Rockefeller had lower water levels, significantly less reduced surface and 15 cm deep soils and significantly lower interstitial sulfide concentrations and salinity levels. Na, K, Mg and Ca concentrations reflected the same pattern as salinity. Live aboveground biomass, primary productivity and leaf area were 3–4 times greater in the managed marsh. This indicates that marsh management improved soil conditions and provided an environment favorable to more vigorous plant growth. The management scheme at Fina LaTerre was also successful at maintaining lower water levels than in the adjacent unmanaged area. However, surface soils were more reduced and interstitial salinity higher, on average, in the managed marsh indicating generally poorer water circulation. Primary productivity was 50% less and stem density, leaf area, net CO2 and total CO2 exchange rates were significantly lower in the managed marsh, compared to the nearby reference marsh. Conditions in the managed marsh indicate that the management scheme was not successful at improving soil conditions when compared to those in the adjacent unmanaged marsh. This study indicates that structural marsh management is not the universal answer to problems faced by Louisiana's coastal wetlands, but may be of value in specific situations.  相似文献   
30.
Regulation of sulfate assimilation in Arabidopsis and beyond   总被引:2,自引:0,他引:2  
Kopriva S 《Annals of botany》2006,97(4):479-495
BACKGROUND AND AIMS: Sulfate assimilation is a pathway used by prokaryotes, fungi and photosynthetic organisms to convert inorganic sulfate to sulfide, which is further incorporated into carbon skeletons of amino acids to form cysteine or homocysteine. The pathway is highly regulated in a demand-driven manner; however, this regulation is not necessarily identical in various plant species. Therefore, our knowledge of the regulation of sulfate assimilation is reviewed here in detail with emphasis on different plant species. SCOPE: Although demand-driven control plays an essential role in regulation of sulfate assimilation in all plants, the molecular mechanisms of the regulation and the effects of various treatments on the individual enzymes and metabolites are often different. This review summarizes (1) the molecular regulation of sulfate assimilation in Arabidopsis thaliana, especially recent data derived from platform technologies and functional genomics, (2) the co-ordination of sulfate, nitrate and carbon assimilations in Lemna minor, (3) the role of sulfate assimilation and glutathione in plant-Rhizobia symbiosis, (4) the cell-specific distribution of sulfate reduction and glutathione synthesis in C(4) plants, (5) the regulation of glutathione biosynthesis in poplar, (6) the knock-out of the adenosine 5'phosphosulfate reductase gene in Physcomitrella patens and identification of 3'-phosphoadenosyl 5'-phosphosulfate reductase in plants, and (7) the sulfur sensing mechanism in green algae. CONCLUSIONS: As the molecular mechanisms of regulation of the sulfate assimilation pathway are not known, the role of Arabidopsis as a model plant will be further strengthened. However, this review demonstrates that investigations of other plant species will still be necessary to address specific questions of regulation of sulfur nutrition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号