首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   2篇
  国内免费   3篇
  121篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   9篇
  2008年   4篇
  2007年   15篇
  2006年   4篇
  2005年   12篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有121条查询结果,搜索用时 10 毫秒
101.
Phytochrome evolution: Phytochrome genes in ferns and mosses   总被引:2,自引:0,他引:2  
We have isolated phytochrome genes from the moss Physcomitrella , the fern Psilotum and PCR-generated phytochrome sequences from a few other ferns. The phytochrome gene of the moss Physcomitrella turned out not to contain the aberrant C-terminal third of the phytochrome from the moss Ceratodon , but the transmitter module-like sequences found in other phytochromes. A series of different phytochrome genes was detected in Psilotum . Differences between the amino acid sequences derived from them ranged from about 5 to more than 22%. Some of these genes are likely pseudogenes. Analysis by phylogenetic tree constructions revealed that higher and lower plant phytochromes evolved with different velocities. Lower plant phytochromes form a separate family characterized by a high degree of similarity. The amino acid differences between phytochrome types detected in a single species of higher plants are about two-fold higher than the differences between phytochromes of species of lower plants belonging to different divisions ( Physcomitrella and Selaginella ). Future studies on phytochrome sequences may eventually also throw light on the significance of Psilotum in the evolution of vascular plants.  相似文献   
102.
In recent years, lipid droplets have emerged as dynamic organelles rather than inactive storage sites for triacylglycerol. The number of proteins known to be associated with lipid droplets has increased, but remains small in comparison with those found with other organelles. Also the mechanisms of how lipid droplets are recognized and bound by proteins need deeper investigation. Here, we present a fast, simple and inexpensive approach to assay proteins for their association with lipid droplets in vivo that can help to screen protein candidates or mutated variants of proteins for their association in an efficient manner. For this, a system to transiently transform Nicotiana tabacum pollen grains was used because these naturally contain lipid droplets. We designed vectors for fast cloning of genes as fusions with either mVenus or mCherry. This allowed us to assay colocalization with lipid droplets stained with Nile Red and Bodipy 505/515, respectively. We successfully tested our system not only for proteins from Arabidopsis thaliana, but also for proteins from the moss Physcomitrella patens and the alga Chlamydomonas reinhardtii. The small size of the vector used allows easy exchange of codons by site‐directed mutagenesis. We used this to show that two proline residues in the proline knot of a caleosin are not essential for the binding of lipid droplets. We also demonstrated that peroxisomes are not associated with the lipid droplets in tobacco pollen tubes, which reduces the risk of false interpretation of microscopic data in our system.  相似文献   
103.
广西金花茶新植物   总被引:4,自引:1,他引:3  
莫新礼  钟业聪   《广西植物》1985,(4):351-352
<正> 广西壮族自治区人民政府环境保护办公室根据国务院城乡环境保护部的指示,于1984年组织了由广西植物研究所、广西环境保护研究所和广西林业勘测设计院等三单位派员组成广西金花茶植物资源调查队,对区内金花茶资源进行较系统的调查研究,我们在调查中发现了上述金花茶新植物,现报道于下。  相似文献   
104.
Heat stress can restrict plant growth,development,and crop yield.As essential plant antioxidants,carotenoids play significant roles in plant stress resistance.b-carotene hydroxylase(BHY)and b-carotene ketolase(BKT),which catalyze the conversions of b-carotene to zeaxanthin and b-carotene to canthaxanthin,respectively,are key enzymes in the carotenoid biosynthetic pathway,but little is known about their potential functions in stress resistance.Here,we investigated the roles of b-carotene hydroxylase and b-carotene ketolase during heat stress in Physcomitrella patens through expressing a b-carotene ketolase gene from Chlamydomonas reinhardtii(Cr BKT)and a b-carotene hydroxylase gene from Haematococcus pluvialis(Hp BHY)in the moss P.patens.In transgenic moss expressing these genes,carotenoids content increased(especially lutein content),and heat stress tolerance increased,with reduced leafy tissue necrosis.To investigate the mechanism of this heat stress resistance,we measured various physiological indicators and found a lower malondialdehyde level,higher peroxidase and superoxide dismutase activities,and higher endogenous abscisic acid and salicylate content in the transgenic plants in response to high-temperature stress.These results demonstrate that Cr BKT and Hp BHY increase plant heat stress resistance through the antioxidant and damage repair metabolism,which is related to abscisic acid and salicylate signaling.  相似文献   
105.
As initial steps to define how the 26S proteasome degrades ubiquitinated proteins in plants, we have characterized many of the subunits that comprise the proteolytic complex from Arabidopsis thaliana. A set of 23 Arabidopsis genes encoding the full complement of core particle (CP) subunits and a collection encoding 12 out of 18 known eukaryotic regulatory particle (RP) subunits, including six AAA-ATPase subunits, were identified. Several of these 26S proteasome genes could complement yeast strains missing the corresponding orthologs. Using this ability of plant subunits to functionally replace yeast counterparts, a parallel structure/function analysis was performed with the RP subunit RPN10/MCB1, a putative receptor for ubiquitin conjugates. RPN10 is not essential for yeast viability but is required for amino acid analog tolerance and degradation of proteins via the ubiquitin-fusion degradation pathway, a subpathway within the ubiquitin system. Surprisingly, we found that the C-terminal motif required for conjugate recognition by RPN10 is not essential for in vivo functions. Instead, a domain near the N-terminus is required. We have begun to exploit the moss Physcomitrella patens as a model to characterize the plant 26S proteasome using reverse genetics. By homologous recombination, we have successfully disrupted the RPN10 gene. Unlike yeast rpn10 strains which grow normally, Physcomitrella rpn10 strains are developmentally arrested, being unable to initiate gametophorogenesis. Further analysis of these mutants revealed that RPN10 is likely required for a developmental program triggered by plant hormones.  相似文献   
106.
小立碗藓作为植物分子生物学研究极具前景的模式系统已日益受到人们的重视,它的生活史周期短,易于培养,转基因植株易于分析,核基因组容易和外源DNA发生同源重组,这些特点使它成为研究基因功能的良好材料.一些成功的基因敲除和基因破坏已经在小立碗藓中实现,这些基因的功能也通过小立碗藓转化植株的特点得以证实.小立碗藓标签突变文库已经建立,其应用为小立碗藓基因的进一步研究打下了基础.关于小立碗藓的ESTs数据库已经建立,已有67 000条ESTs信息.  相似文献   
107.
Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh‐water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence‐induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land.  相似文献   
108.
以即可开单被花又可开重被花的大花铁线莲重被品种"薇安"为研究对象,对"薇安"同一时期同一植株上的3种不同花瓣类型(单被、半重被、重被)采用高通量测序技术进行拼接及功能注释,筛选不同花被类型下表达量高度差异的关键基因后进行实时荧光定量PCR验证。结果显示:转录组测序共产生13.8GB原始数据,3个转录本文库两两比较共获得3 075条差异表达基因(DEG),其中单被花与半重被样本对比(A vs B)包括649条上调DEG,605条下调DEG;半重被花与重被花对比(B vs C)包括上调DEG 1 046条和下调DEG 721条;单被花与重被花对比(A vs C)有上调DEG 1 129条和下调DEG 859条。3个不同花被下共存的差异表达基因有134条。根据基因功能注释从总DEG中筛选出26条可能与重瓣化性状相关的基因进行聚类分析,并随机挑选10个目的基因进行荧光定量PCR验证。PCR结果显示这些基因的表达量在铁线莲"薇安"同一时期同一植株的3种花被类型中均存在显著差异。最终筛选出与铁线莲重瓣化相关的关键基因有MADS-BOX类基因PMADS1、AP3、FRUITFULL、FLC;生长素反应蛋白IAA9、生长素输入载体、脱落酸8'羟化酶、吲哚乙酸诱导蛋白ARG7等。本研究为探究铁线莲重瓣花分子机制提供了基础数据和理论依据。  相似文献   
109.
ANGUSTIFOLIA (AN) is a plant-specific subfamily of the CtBP/BARS/AN family, characterized by a plant-specific C-terminal domain of approximately 200 amino acids. Previously, we revealed that double knockout (DKO) lines of Physcomitrium (Physcomitrella) patens ANGUSTIFOLIA genes (PpAN1-1 and PpAN1-2) show defects in gametophore height and the lengths of the seta and foot region of sporophytes, by reduced cell elongation. In addition to two canonical ANs, the genome of P. patens has two atypical ANs without a coding region for a plant-specific C-terminus (PpAN2-1 and PpAN2-2); these were investigated in this study. Similar to PpAN1s, both promoters of the PpAN2 genes were highly active in the stems of haploid gametophores and in the middle-to-basal region of young diploid sporophytes that develop into the seta and foot. Analyses of PpAN2-1/2-2 DKO and PpAN quadruple knockout (QKO) lines implied that these four AN genes have partially redundant functions to regulate cell elongation in their expression regions. Transgenic strains harboring P. patens α-tubulin fused to green fluorescent protein, which were generated from a QKO line, showed that the orientation of the microtubules in the gametophore tips in the PpAN QKO lines was unchanged from the wild-type and PpAN1-1/1-2 DKO plants. In addition to both PpAN2-1 and PpAN2-2, short Arabidopsis AN without the C-terminus of 200 amino acids could rescue the Arabidopsis thaliana an-1 phenotypes, implying AN activity is dependent on the N-terminal regions.  相似文献   
110.
Elevated atmospheric carbon dioxide concentrations ([CO2]) generally increase plant photosynthesis in C3 species, but not in C4 species, and reduce stomatal conductance in both C3 and C4 plants. In addition, tissue nitrogen concentration ([N]) often fails to keep pace with enhanced carbon gain under elevated CO2, particularly in C3 species. While these responses are well documented in many species, implications for plant growth and nutrient cycling in native ecosystems are not clear. Here we present data on 18 years of measurement of above and belowground biomass, tissue [N] and total standing crop of N for a Scirpus olneyi‐dominated (C3 sedge) community, a Spartina patens‐dominated (C4 grass) community and a C3–C4‐mixed species community exposed to ambient and elevated (ambient +340 ppm) atmospheric [CO2] in natural salinity and sea level conditions of a Chesapeake Bay wetland. Increased biomass production (shoots plus roots) under elevated [CO2] in the S. olneyi‐dominated community was sustained throughout the study, averaging approximately 35%, while no significant effect of elevated [CO2] was found for total biomass in the C4‐dominated community. We found a significant decline in C4 biomass (correlated with rising sea level) and a concomitant increase in C3 biomass in the mixed community. This shift from C4 to C3 was accelerated by the elevated [CO2] treatment. The elevated [CO2] stimulation of total biomass accumulation was greatest during rainy, low salinity years: the average increase above the ambient treatment during the three wettest years (1994, 1996, 2003) was 2.9 t ha−1 but in the three driest years (1995, 1999, 2002), it was 1.2 t ha−1. Elevated [CO2] depressed tissue [N] in both species, but especially in the S. olneyi where the relative depression was positively correlated with salinity and negatively related with the relative enhancement of total biomass production. Thus, the greatest amount of carbon was added to the S. olneyi‐dominated community during years when shoot [N] was reduced the most, suggesting that the availability of N was not the most or even the main limitation to elevated [CO2] stimulation of carbon accumulation in this ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号