首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5696篇
  免费   640篇
  国内免费   248篇
  6584篇
  2024年   30篇
  2023年   89篇
  2022年   130篇
  2021年   217篇
  2020年   339篇
  2019年   421篇
  2018年   285篇
  2017年   218篇
  2016年   229篇
  2015年   252篇
  2014年   291篇
  2013年   482篇
  2012年   252篇
  2011年   238篇
  2010年   226篇
  2009年   272篇
  2008年   291篇
  2007年   252篇
  2006年   238篇
  2005年   207篇
  2004年   193篇
  2003年   151篇
  2002年   156篇
  2001年   127篇
  2000年   93篇
  1999年   116篇
  1998年   93篇
  1997年   90篇
  1996年   52篇
  1995年   66篇
  1994年   57篇
  1993年   43篇
  1992年   48篇
  1991年   44篇
  1990年   36篇
  1989年   27篇
  1988年   29篇
  1987年   29篇
  1986年   23篇
  1985年   30篇
  1984年   20篇
  1983年   9篇
  1982年   22篇
  1981年   10篇
  1980年   12篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1976年   9篇
  1974年   6篇
排序方式: 共有6584条查询结果,搜索用时 15 毫秒
81.
Demersal fish resources in the East China and Yellow Seas were reviewed. A current and historical survey of the fishery was made. The distribution and migration of demersal fish were characterized, and an assessment of fishery resources was provided. The standardization of fishing efforts and resources management were also examined.  相似文献   
82.

The factor of most importance to the structure of epipelagic oceanic communities is the absence of cover and the inability to hide from predators in surface waters during the day (Elton, 1939). Visual predation in an environment devoid of cover has resulted in convergent evolution into only six modal adaptive patterns. Large, fast, visual predators roam the water, 1) alone or in 2) schools, and they eat anything of appropriate size that they see. Prey escape only by dint of 3) very small size, 4) invisibility due to tissue transparency, 5) diurnal vertical migration, or by 6) exploitation of the sea surface. The sensory ecology and physiology of zooplankton are different from that of all other animal categories in all other habitats. Epipelagic zooplankton are either extremely small animals, with small and structurally simple sense organs, or they are large, with gelatinous, transparent bodies which often lack sense organs.  相似文献   
83.
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.  相似文献   
84.

Introduction

The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints.

Methods

We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments.

Results

A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC.

Conclusion

These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.  相似文献   
85.
The Guayana Highlands (GH) constitute a highly diverse, but relatively poorly studied Neotropical biome, comprised of ~50 flat-topped mountain summits (called tepuis). Previous studies based on warming forecasts for the region suggested that an upward displacement of environmental conditions of 500–700 m could occur by 2100, potentially resulting in the extinction of c. 50% of its endemic flora due to total habitat loss. To assess the ecological responses of the species to climate change, and select the appropriate conservation measures, long-term monitoring of the GH plant communities will be necessary. In this study, the baseline state for future comparisons was established for the best explored tepui in terms of its flora, Roraima-tepui (2810 m), through a floristic characterization of its different vegetation types. We also identified the environmental gradients underlying the major plant communities, and assessed the effects of human activities on the chemistry of soils and water at three field camps. Our results yielded five main community types: three meadows, one shrubland, and one forest, with their corresponding diagnostic species. The herbaceous communities were mainly influenced by the presence of flat sandy soils, with varying flooding capacity. Shrublands and forests were characterized by irregular organic soils with very low pH. Finally, pH values below 3 were measured on an organic soil of a field camp, although further studies will be necessary to attribute this deviation to human activities.  相似文献   
86.
The specific adhesion of cells to other cells or to particular tissue microenvirorvments is a basic function of cell migration and recognition, and underlines many biologic processes including embryogenesis, repair and immunity. Leukocytes express an array of surface receptors broadly known as “accessory adhesion molecules.” which mediate most cell -cell interactions, direct lymphocyte traffic between anatomical compartments, and facilitate cellular adhesion to the inflammation or alloantigenic sites (Springer 1990). In addition, adhesion molecules are involved in the process of antigen recognition, and may costimulate cell activation and transformation. These proteins are thought to affect the very early antigen independent events between host leukocytes and vascular endothelium. Because of these activities, the subject of adhesion molecules is gaining interest in the field of organ transplantation, in both conceptualization and development of novel therapeutic strategies (de Sousa et al. 1991, Kupiec-Weglinski et al. 1993a, Heemann et al. 1993).  相似文献   
87.
The extracellular matrix regulates functional and morphological differentiation of mammary epithelial cells both in vivo and in culture. The MCF10A human breast epithelial cell line is ideal for studying these processes because it retains many characteristics of normal breast epithelium. We describe a distinct set of morphological changes occurring in MCF10A cells plated on laminin-5, a component of the breast gland basement membrane extracellular matrix. MCF10A cells adhere and spread on laminin-5 about five times more rapidly than on fibronectin or uncoated surfaces. Within 10 minutes from plating on laminin-5, they send out microfilament-rich filopodia and by 30 minutes acquire a cobblestone appearance with microfilaments distributed around the cell periphery. At 90 minutes, with or without serum, >75% of the MCF10A cells plated on laminin-5 remain in this stationary cobblestone phenotype, while the remainder takes on a motile appearance. Even after 18 hours, when the culture is likely entering an exponential growth phase, the majority of cells maintain a stationary cobblestone appearance, though motile cells have proportionally increased. In contrast, the fully transformed, malignant human breast epithelial cells, MCF7, never acquire a stationary cobblestone appearance, do not organize peripheral microfilaments, and throughout the early time points up to 120 min appear to be constantly motile on laminin-5. We propose that changes in morphology and microfilament organization in response to laminin-5 may represent a benchmark for distinguishing normal vs. malignant behavior of epithelial cells derived from the mammary gland. This may lead to better model systems for studying the interactions between breast epithelium and the basement membrane extracellular matrix, which appear to be deregulated in processes like carcinogenesis and metastasis.  相似文献   
88.
Cell migration is dependent on a series of integrated cellular events including the membrane recycling of the extracellular matrix receptor integrins. In this paper, we investigate the role of autophagy in regulating cell migration. In a wound-healing assay, we observed that autophagy was reduced in cells at the leading edge than in cells located rearward. These differences in autophagy were correlated with the robustness of MTOR activity. The spatial difference in the accumulation of autophagic structures was not detected in rapamycin-treated cells, which had less migration capacity than untreated cells. In contrast, the knockdown of the autophagic protein ATG7 stimulated cell migration of HeLa cells. Accordingly, atg3?/? and atg5?/? MEFs have greater cell migration properties than their wild-type counterparts. Stimulation of autophagy increased the co-localization of β1 integrin-containing vesicles with LC3-stained autophagic vacuoles. Moreover, inhibition of autophagy slowed down the lysosomal degradation of internalized β1 integrins and promoted its membrane recycling. From these findings, we conclude that autophagy regulates cell migration, a central mechanism in cell development, angiogenesis, and tumor progression, by mitigating the cell surface expression of β1 integrins.  相似文献   
89.
Cell migration requires a highly coordinated interplay between specialized plasma membrane adhesion complexes and the cytoskeleton. Protein phosphorylation/dephosphorylation modifications regulate many aspects of the integrin-cytoskeleton interdependence, including their coupling, dynamics, and organization to support cell movement. The endoplasmic reticulum-bound protein tyrosine phosphatase PTP1B has been implicated as a regulator of cell adhesion and migration. Recent results from our laboratory shed light on potential mechanisms, such as Src/FAK signaling through Rho GTPases and integrin-cytoskeletal coupling.  相似文献   
90.
Efficient cell migration is central to the normal development of tissues and organs and is involved in a wide range of human diseases, including cancer metastasis, immune responses, and cardiovascular disorders. Mesenchymal migration is modulated by focal-adhesion proteins, which organize into large integrin-rich protein complexes at the basal surface of adherent cells. Whether the extent of clustering of focal-adhesion proteins is actually required for effective migration is unclear. We recently demonstrated that the depletion of major focal-adhesion proteins, as well as modulation of matrix compliance, actin assembly, mitochondrial activity, and DNA recombination, all converged into highly predictable, inter-related, biphasic changes in focal adhesion size and cell migration. Herein, we further discuss the role of focal adhesions in controlling cell spreading and test their potential role in cell migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号