首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4506篇
  免费   209篇
  国内免费   123篇
  4838篇
  2023年   35篇
  2022年   52篇
  2021年   78篇
  2020年   66篇
  2019年   108篇
  2018年   139篇
  2017年   85篇
  2016年   78篇
  2015年   82篇
  2014年   239篇
  2013年   261篇
  2012年   171篇
  2011年   243篇
  2010年   173篇
  2009年   190篇
  2008年   218篇
  2007年   202篇
  2006年   187篇
  2005年   180篇
  2004年   133篇
  2003年   127篇
  2002年   112篇
  2001年   98篇
  2000年   68篇
  1999年   69篇
  1998年   76篇
  1997年   62篇
  1996年   63篇
  1995年   50篇
  1994年   58篇
  1993年   64篇
  1992年   59篇
  1991年   62篇
  1990年   63篇
  1989年   49篇
  1988年   46篇
  1987年   51篇
  1986年   29篇
  1985年   55篇
  1984年   99篇
  1983年   75篇
  1982年   84篇
  1981年   73篇
  1980年   63篇
  1979年   65篇
  1978年   38篇
  1977年   45篇
  1976年   33篇
  1975年   30篇
  1974年   24篇
排序方式: 共有4838条查询结果,搜索用时 0 毫秒
31.
The membrane (Na+ + Mg2+)-ATPase of Acholeplasma laidlawii B has been solubilized with a Brij-58/sodium deoxycholate mixture and purified by a combination of gel filtration and ion-exchange chromatography. The purified, partially delipidated ATPase has a specific activity of 195 μmol Pi/mg protein per h, which could be enhanced by 25% upon the addition of exogenous phospholipids. The kinetic properties of the purified enzyme are similar to those of the native membrane-bound enzyme, suggesting that it has not been substantially altered during the purification procedure. The enzyme is an assembly of five polypeptide species and its kinetic properties suggest that it is dissimilar to other known ATPases.  相似文献   
32.
Estimation of pyruvate decarboxylation in perfused rat skeletal muscle   总被引:12,自引:0,他引:12  
A total of 46 E. coli strains showing mannose-resistant, P-blood-group independent hemagglutination of human erythrocytes were tested for binding to neuraminic acid. Nine of the strains completely lost their hemagglutination activity after the erythrocytes were treated with neuraminidase. To characterize the receptor structure, different neuraminic acid containing glycoproteins, their desialylated derivatives and neuraminyl oligosaccharides were tested for hemagglutination inhibition. These studies showed that the nine strains had binding specificity for alpha 2-3 linked neuraminic acid.  相似文献   
33.
In vivo interactions of acrylonitrile with macromolecules in rats   总被引:1,自引:0,他引:1  
The irreversible binding of [2,3-14C]acrylonitrile (VCN) to proteins, RNA and DNA of various tissues of male Sprague-Dawley rats after a single oral dose of 46.5 mg/kg (0.5 LD50) has been studied. Proteins were isolated by chloroform-isoamyl alcohol-phenol extraction. RNA and DNA were separated by hydroxyapatite chromatography. Binding of VCN to proteins was extensive and was time dependent. Radioactivity in nucleic acids was registered in the liver and the target organs, stomach and brain. DNA alkylation, which increased by time, was significantly higher in the target organs, brain and stomach (119 and 81 pmol/mg, respectively, at 24 h) than that in the liver. The covalent binding indices for the liver, stomach and brain at 24 h after dosing were, 5.9, 51.9 and 65.3, respectively. These results suggest that VCN is able to act as a multipotent carcinogen by alkylation of DNA in the extrahepatic target tissues, stomach and brain.  相似文献   
34.
We investigated the effect of rat interferon-/ (IFN) on the expression of glycerol phosphate dehydrogenase (E.C.1.1.1.8; GPDH), in both C6 cells and pure cultures of oligodendrocytes. IFNs are naturally produced inhibitors of cell growth that can also affect differentiated cell functions. GPDH is a biochemical marker for oligodendrocytes and is known to be developmentally regulated and steroid inducible. GPDH activity is induced by hydrocortisone (HC) 3.5 fold in C6 cells and 5 fold in oligodendrocytes compared to untreated cultures. A pretreatment of these cells with 75 U/ml of rat IFN-/ resulted in an inhibition of the HC induction of GPDH enzymatic activity by 50% and 40% in C6 cells and oligodendrocytes respectively. We also found that IFN impaired the accumulation of GPDH mRNA in both cell types. These results demonstrate that IFNs are capable of modifying the cellular response to hormones in cells of neuroepithelial origin, and suggest the possibility that IFNs may be able to influence the development and function of the brain.Special issue dedicated to Dr. Paola S. Timiras  相似文献   
35.
The phosphate adsorption maximum as calculated by the Langmuir equation was used to predict the fertilizer P requirement of wheat (Triticum aestivium, cv. Caldwell) on both virgin and cultivated Decatur clay loam (clayey, kaolinitic, thermic, Rhodic Paleudult) and Hartsells sandy loam soils (fine-loamy, siliceous, thermic, Typic Hapludult). Soils with higher adsorption maximum were found to require more fertilizer P than soils with lower adsorption maximum. For soils 25% saturation of the adsorption maximum gave the optimum dry matter yield. This corresponded to equilibrium P concentration of 0.45 mg L−1 for Decatur cultivated and 0.31 mg L−1 for Decatur and Hartsells virgin soils for optimum dry matter yield. These values are within the range of those reported previously by other investigators working with different soils.  相似文献   
36.
Bean ( Phaseolus vulgaris L.) seedlings were cultured on complete or phosphate-deficient nutrient medium. After 14 days of culture on phosphate-deficient medium the visible symptoms of Pi deficiency were observed only in the shoot, the fresh and dry weights of the roots were slightly higher than in control plants. The decreased Pi content in the roots had little effect on total respiration rate but had an effect on the level of inhibition of respiration by cyanide. The high resistance of respiration to cyanide observed in Pi-deficient roots was the result of the suppression of cytochrome path activity and an increased participation of the alternative, cyanide-resistant pathway. The cytochrome pathway activity increased when inorganic phosphate was supplied to Pi-deficient roots for 1 or 3.5 h. It is speculated that the suppression of cytochrome pathway in Pi-deficient roots may result from restriction of the phosphorylating capacity or a partial inhibition of cytochrome oxidase activity.  相似文献   
37.
A series of amphiphilic polymethylenecarboxymaleimides has been synthesized for use as sulfhydryl reagents applicable to membrane proteins. Physical properties of the compounds which are relevant to their proposed mode of action have been determined. By comparing rates of reaction in aqueous and aprotic solvents, the compounds have been shown to react exclusively with the thiolate ion. The effects of the reagents on three membrane-associated proteins are reported, and in two cases a comparative study has been made of the effects on the proteins in the absence of membranes. A mechanism is proposed whereby the reagents are anchored at the lipid/water interface by the negatively charged carboxyl group, thus siting the reactive maleimide in a plane whose depth is defined by the length of the reagent. Supporting evidence for this model is provided by the inability of the reagents to traverse membranes, and variation of their inhibitory potency with chain length when the proteins are embedded in the membrane, but not when extracted into solution. As examples of general use of the reagents to probe sulfhydryl groups in membrane proteins, the reagents have been used to (a) determine the depths in the membrane at which two populations of sulfhydryl groups occur in the mitochondrial phosphate transporter; (b) locate a single sulfhydryl associated with the active site ofD--hydroxybutyrate dehydrogenase in the inner mitochondrial membrane; (c) examine sulfhydryl groups in theD-3-glyceraldehyde phosphate dehydrogenase associated with the human red blood cell membrane.  相似文献   
38.
Abstract: Reactive oxygen species have been implicated in neuronal injury associated with various neuropathological disorders. However, little is known regarding the relationship between antioxidant enzyme capacity and resultant toxicity. The antioxidant pathways of primary cerebrocortical cultures were directly examined using a novel technique that measures pentose phosphate pathway (PPP) activity, which is enzymatically coupled to glutathione peroxidase (GPx) detoxification of hydrogen peroxide (H2O2). PPP activity was quantified from data obtained by gas chromatography/mass spectrometry analysis of released labeled lactate following metabolic degradation of [1,6-13C2,6,6-2H2]glucose by cerebrocortical cultures. The antioxidant capacity of these cultures was systematically evaluated using H2O2, and the resultant toxicity was quantified by lactate dehydrogenase release. Exposure of primary mixed and purified astrocytic cultures to H2O2 caused stimulation of PPP activity in a concentration-dependent fashion from 0.25 to 22.2% and from 6.9 to 66.7% of glucose metabolized to lactate through the PPP, respectively. In the mixed cultures, chelation of iron before H2O2 exposure was protective and resulted in a correlation between PPP saturation and toxicity. Conversely, addition of iron, inhibition of GPx, or depletion of glutathione decreased H2O2-induced PPP stimulation and increased toxicity. These results implicate the Fenton reaction, reflect the pivotal role of GPx in H2O2 detoxification, and contribute to our understanding of the etiological role of free radicals in neuropathological conditions.  相似文献   
39.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) serve to transduce information from agonist-bound receptors to effector enzymes or ion channels. Current models of G protein activation-deactivation indicate that the oligomeric GDP-bound form must undergo release of GDP, bind GTP and undergo subunit dissociation, in order to be in active form (GTP bound subunits and free dimers) and to regulate effectors. The effect of receptor occupation by an agonist is generally accepted to be promotion of guanine nucleotide exchange thus allowing activation of the G protein. Recent studies indicate that transphosphorylation leading to the formation of GTP from GDP and ATP in the close vicinity, or even at the G protein, catalysed by membrane-associated nucleoside diphosphate kinase, may further activate G proteins. This activation is demonstrated by a decreased affinity of G protein-coupled receptors for agonists and an increased response of G protein coupled effectors. In addition, a phosphorylation of G protein subunits and consequent phosphate transfer reaction resulting in G protein activation has also been demonstrated. Finally, endogenously formed GTP was preferentially effective in activating some G proteins compared to exogenous GTR The aim of this report is to present an overview of the evidence to date for a transphosphorylation as a means of G protein activation (see also refs [1 and 2] for reviews). (Mol Cell Biochem 157: 593, 1996)Recipient of Servier Investigator Award  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号